We present a new measurement of the inclusive and differential production cross sections of $J/\psi$ mesons and $b$-hadrons in proton-antiproton collisions at $\sqrt{s}=1960$ GeV. The data correspond to an integrated luminosity of 39.7 pb$^{-1}$ collected by the CDF Run II detector. We find the integrated cross section for inclusive $J/\psi$ production for all transverse momenta from 0 to 20 GeV/$c$ in the rapidity range $|y|<0.6$ to be $4.08 \pm 0.02 (stat)^{+0.36}_{-0.33} (syst) \mu {\rm b}$. We separate the fraction of $J/\psi$ events from the decay of the long-lived $b$-hadrons using the lifetime distribution in all events with $p_T(J/\psi) > 1.25$ GeV/$c$. We find the total cross section for $b$-hadrons, including both hadrons and anti-hadrons, decaying to $J/\psi$ with transverse momenta greater than 1.25 GeV/$c$ in the rapidity range $|y(J/\psi)|<0.6$, is $ 0.330 \pm 0.005 (stat) ^{+0.036}_{-0.033} (syst) ~\mu{\rm b}$. Using a Monte Carlo simulation of the decay kinematics of $b$-hadrons to all final states containing a $J/\psi$, we extract the first measurement of the total single $b$-hadron cross section down to zero transverse momentum at $\sqrt{s}=1960$ GeV. We find the total single $b$-hadron cross section integrated over all transverse momenta for $b$-hadrons in the rapidity range $|y|<0.6$ to be $ 17.6 \pm 0.4 (stat)^{+2.5}_{-2.3} (syst) \mu{\rm b}$.
Integrated J/PSI cross section shown both uncorrected and corrected for branching ratio (5.88+-0.10PCT) of J/PSI into mu+mu-. Systematic error includes pT-dependent and fully correlated errors added in quadrature.
Differential cross section times branching ratio (5.88+-0.10PCT) into mu+mu- as a function of transverse momentum for the rapidity range -0.6 to 0.6 at a centre-of-mass energy of 1960 GeV.
Integrated bottom-hadron prouction cross section shown both uncorrected andcorrected for branching ratio (5.88+-0.10PCT) of J/PSI into mu+mu-. Systematic error includes pT-dependent and fully correlated errors added in quadrature.
We report a measurement of the rate of prompt diphoton production in $p\bar{p}$ collisions at $\sqrt{s}=1.96 ~\hbox{TeV}$ using a data sample of 207 pb$^{-1}$ collected with the upgraded Collider Detector at Fermilab (CDF II). The background from non-prompt sources is determined using a statistical method based on differences in the electromagnetic showers. The cross section is measured as a function of the diphoton mass, the transverse momentum of the diphoton system, and the azimuthal angle between the two photons and is found to be consistent with perturbative QCD predictions.
Cross section as a function of the diphoton mass.
Cross section as a function of the diphoton transverse momentum.
Cross section as a function of the diphoton azimuthal angle difference.
New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.
Assorted-$p_T$ correlation functions (0.65 < $p_{T,ref}$ < 2.5 GeV/$c$) for charged hadrons of 0.5 < $p_T$ < 0.7 GeV/$c$ and 1.0 < $p_T$ < 1.5 obtained in Au+Au collisions at $\sqrt{S_{NN}}$ = 62.4 GeV.
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via cumulants method
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via correlation function method
We report on charged hadron production in deuteron-gold reactions at sqrt(s_NN) = 200 GeV. Our measurements in the deuteron-direction cover 1.4 < eta < 2.2, referred to as forward rapidity, and in the gold-direction -2.0 < eta < -1.4, referred to as backward rapidity, and a transverse momentum range p_T = 0.5-4.0 GeV/c. We compare the relative yields for different deuteron-gold collision centrality classes. We observe a suppression relative to binary collision scaling at forward rapidity, sensitive to low momentum fraction (x) partons in the gold nucleus, and an enhancement at backward rapidity, sensitive to high momentum fraction partons in the gold nucleus.
$R_{cp}$ as a function of $p_T$ for Punch-Through Hadrons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.
$R_{cp}$ as a function of $p_T$ for Hadron Decay Muons at forward rapidity and backward rapidity for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.
$R_{cp}$ as a function of $\eta$ for 1.5 < $p_T$ < 4.0 GeV/$c$ for different centrality classes. Systematic uncertainties which are point-to-point uncorrelated (sys-uncorr) and correlated (sys-corr) are shown.
We present a measurement of the ttbar production cross section using events with one charged lepton and jets from ppbar collisions at a center-of-mass energy of 1.96 TeV. In these events, heavy flavor quarks from top quark decay are identified with a secondary vertex tagging algorithm. From 162 pb-1 of data collected by the Collider Detector at Fermilab, a total of 48 candidate events are selected, where 13.5 +- 1.8 events are expected from background contributions. We measure a ttbar production cross section of 5.6^{+1.2}_{-1.1} (stat.) ^{+0.9}_{0.6} (syst.) pb.
TTBAR production cross section.
The Standard Model predictions for $W\gamma$ and $Z\gamma$ production are tested using an integrated luminosity of 200 pb$^{-1}$ of \ppbar collision data collected at the Collider Detector at Fermilab. The cross sections are measured selecting leptonic decays of the $W$ and $Z$ bosons, and photons with transverse energy $E_T>7$ GeV that are well separated from leptons. The production cross sections and kinematic distributions for the $W\gamma$ and $Z\gamma$ are compared to SM predictions.
Measured cross sections for W+ GAMMA production.
Measured cross sections for Z0 GAMMA production.
We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.
Average number of participants and collisions in Au + Au reaction at RHIC for different centralities determined from a Glauber model.
$\phi$ meson mass centroid and width for minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
Minimum-bias $dN/dy$ and $T$ for different subsystem combinations.
The processes e+ e- --> eta gamma, e+ e- --> pi0 gamma --> 3 gamma have been studied in the c.m. energy range 600--1380 MeV with the CMD-2 detector. The following branching ratios have been determined: Br(rho --> eta gamma) = (3.21 +- 1.39 +- 0.20)x 10^{-4}; Br(omega --> eta gamma) = (4.44 + 2.29 -1.83 +- 0.28)x 10^{-4}; Br(phi --> eta gamma) = (1.373 +- 0.014 +- 0.085)x 10^{-2}; Br(rho --> pi0 gamma) = (6.21 +1.28 - 1.18 +- 0.39)x 10^{-4}; Br(omega --> pi0 gamma) = (9.06 +- 0.20 +- 0.57)x 10^{-2}; Br(phi --> pi0 gamma) = (1.258 +- 0.037 +- 0.077)x 10^{-3};
Born cross section for the process E+ E- --> ETA GAMMA.
Born cross section for the process E+ E- --> PI0 GAMMA.
We report a measurement of the ttbar production cross section using the CDF II detector at the Fermilab Tevatron. The data consist of events with an energetic electron or muon, missing transverse energy, and three or more hadronic jets, at least one of which is identified as a b-quark jet by reconstructing a secondary vertex. The background fraction is determined from a fit of the transverse energy of the leading jet. Using 162+-10 /pb of data, the total cross section is found to be 6.0+-1.6(stat.)+-1.2(syst.) pb, which is consistent with the Standard Model prediction.
Cross section for different assumed TOP quark masses.
The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 4.0 GeV/c) of single electrons as a function of centrality in Au+Au collisions at sqrt(s_NN) = 200 GeV. Contributions to the raw spectra from photon conversions and Dalitz decays of light neutral mesons are measured by introducing a thin (1.7% X_0) converter into the PHENIX acceptance and are statistically removed. The subtracted ``non-photonic'' electron spectra are primarily due to the semi-leptonic decays of hadrons containing heavy quarks (charm and bottom). For all centralities, charm production is found to scale with the nuclear overlap function, T_AA. For minimum-bias collisions the charm cross section per binary collision is N_cc^bar/T_AA = 622 +/- 57 (stat.) +/- 160 (sys.) microbarns.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value only includes data from Au+Au collisions The value of Alpha = 1 is the expectation in the absence of medium effects.
Value of the Alpha power as used in a fit of dN/dy versus Ncoll, of the form A*Ncoll^Alpha, where N is the non photonic electron yield and Ncoll the number of p+p collisions This value is calculated including previous data of p+p collisions, measured by PHENIX, in addition of the Au+Au data The value of Alpha = 1 is the expectation in the absence of medium effects.
Spectrum in transverse momentum of electrons created in open heavy flavor decays, for minimum bias events.