The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003<x<0.7. The new measurements have small statistical and systematic uncertainties of a few percent and confirm with considerably better accuracy the previous COMPASS measurement. The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spin-orbit coupling of quarks in a transversely polarised proton. As compared to measurements at lower energy, a smaller Sivers asymmetry for positive hadrons is found in the region x > 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.
The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.
The Sivers asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.
The Sivers asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Collins data measurments.
The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.
The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.
The Collins asymmetry, from the 2010 data set, for negative hadrons as a function of X for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.
The Collins asymmetry, from the 2010 data set, for positive hadrons as a function of PT for full range. Also shown are the mean values of other variables plus the correlation with the Sivers data measurments.
Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 < 1 GeV2 and gamma-p centre-of-mass energies in the region 142 < W(gamma-p) < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb-1. Jets were identified using the kT, anti-kT or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 < etajet < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of ETjet in different regions of etajet. Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low ETjet and high etajet. The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alphas2) terms. Values of alphas(Mz) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ET for jet ETARAP -1 TO 2.5 . The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 17 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 21 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported on the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING*** The Bare cross-section statistical covariance is reported as additional resource in YAML, since its size exceeds the maximum size of 10 MB for the library hepdata_lib. It is a statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV, matching the ones of this table.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.
The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb^{-1}. Measurements were made for exchanged photon virtualities, Q^2, in the range 10 to 350 GeV^2. The photons were measured in the transverse-energy and pseudorapidity ranges 4 < ET^gamma < 15 GeV and -0.7 < eta^gamma < 0.9, and the jets were measured in the transverse-energy and pseudorapidity ranges 2.5 < ET^jet <35 GeV and -1.5 < eta^jet < 1.8. Differential cross sections are presented as functions of these quantities. Perturbative QCD predictions give a reasonable description of the shape of the measured cross sections over most of the kinematic range, but the absolute normalisation is typically in disagreement by 20-30%.
The measured differential cross section as a function of Q**2.
The measured differential cross section as a function of X.
The measured differential cross section as a function of the transverse energy of the photon.
Measurements of neutral current cross sections for deep inelastic scattering in e+p collisions at HERA with a longitudinally polarised positron beam are presented. The single-differential cross-sections d(sigma)/dQ2, d(sigma)/dx and d(sigma)/dy and the reduced cross-section were measured in the kinematic region Q2 > 185 GeV2 and y < 0.9, where Q2 is the four-momentum transfer squared, x the Bjorken scaling variable, and y the inelasticity of the interaction. The measurements were performed separately for positively and negatively polarised positron beams. The measurements are based on an integrated luminosity of 135.5 pb-1 collected with the ZEUS detector in 2006 and 2007 at a centre-of-mass energy of 318 GeV. The structure functions F3 and F3(gamma)Z were determined by combining the e+p results presented in this paper with previously published e-p neutral current results. The asymmetry parameter A+ is used to demonstrate the parity violation predicted in electroweak interactions. The measurements are well described by the predictions of the Standard Model.
The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for zero polarisation, Pe=0.
The single-differential cross section DSIG/DQ**2 (Y<0.9,Y(1-x)**2>0.004), corrected to the electroweak Born level, for positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.
The single-differential cross section DSIG/DX (Y<0.9,Y(1-x)**2>0.004) at Q^2=185 GeV^2, corrected to the electroweak Born level, for zero (Pe=0), positive (Pe=+0.32) and negative (Pe=-0.36) polarisations.
Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.
Direct photon fraction. The direct-photon fractions from the virtual-photon analysis as a function of $p_{T}$ in $p+p$ (MB) [1] collisions. The values in the table are equal to this mean value. The statistical and systematic uncertainties are shown by the bars and bands, respectively. The curves show expectations from a NLO pQCD calculation [17, 18] with different cutoff mass scales: (solid) $\mu$ = 0.5 $p_{T}$ , (dash) $\mu$ = 1.0 $p_{T}$ , and (dash-dot) $\mu$ = 2.0 $p_{T}$.
Direct photon fraction. The direct-photon fractions from the virtual-photon analysis as a function of $p_{T}$ in $d$+Au (MB) [1] collisions. The values in the table are equal to this mean value. The statistical and systematic uncertainties are shown by the bars and bands, respectively. The curves show expectations from a NLO pQCD calculation [17, 18] with different cutoff mass scales: (solid) $\mu$ = 0.5 $p_{T}$ , (dash) $\mu$ = 1.0 $p_{T}$ , and (dash-dot) $\mu$ = 2.0 $p_{T}$.
Direct photon cross section. (a) The invariant cross sections of the direct photon in $p+p$ [3, 4] and $d$+Au collisions. The $p+p$ fit result with the empirical parameterization described in the text is shown as well as NLO pQCD calculations, and the scaled $p+p$ fit is compared with the $d$+Au data. The closed and open symbols show the results from the virtual photon and $\pi_{0}$-tagging methods, respectively. The asterisk symbols show the result from the statistical subtraction method for $d$+Au data, overlapping with the virtual photon result in 3 < $p_{T}$ < 5 GeV/c. The values in the table are equal to this mean value. The bars and bands represent the point-to-point (ptp.) and $p_{T}$-correlated (cor.) uncertainties, respectively. (b) The $p+p$ data over the fit. The uncertainties of the fit due to both point-to-point (ptp.) and pT -correlated uncertainties of the data are summed quadratically, and the sum is shown as dotted lines. The NLO pQCD calculations divided by the fit are also shown.
The differential cross-section for elastic charge-exchange scattering of neutrons on protons has been measured at 8 GeV/c over forward laboratory scattering angles (0÷90) mrad (square of four-momentum transfer 0<−t<0.5 (GeV/c)2). The method utilized acoustic spark chambers and about 1900 elastic-scattering events were analysed. A value of (dσ/dΩ)lab=(20±6) mb/sr (dσ/dt=(0.93±0.28) mb/(GeV/c)2) was obtained for the forward differential cross-section and an estimated (0.06±0.03) mb for the elastic charge exchange cross-section. Both cross-sections show the decreased values expected from Pomeranchuk’s second theorem (1) when compared with results at lower energies (2). Further comparison shows that the narrow forward peak in the distribution of dσ/dt previously observed for −t<0.05, is still present at 8 GeV/c, varying in shape only slowly, if at all, with energy. For −t>0.1 however, energy dependence is apparent. The results also suggest that the interaction is spin-dependent and/or that the real parts of the scattering amplitudes in the isospin states 0 and 1 are different. Comparisons with the theoretical predictions show good agreement with the value of forward cross-section given by the Regge pole approach ofAhmadzadeh (3). The model ofRingland andPhillips (4) for single-pion exchange with absorption agrees with our results for −t<0.01 but a predicted secondary peak at −t∼0.08 is not observed.
'2'. '3'.
'2'. '3'.
No description provided.
The cross sections for inelastic photoproduction of J/psi and psi^prime mesons have been measured in ep collisions with the ZEUS detector at HERA, using an integrated luminosity of 468 pb-1 collected in the period 1996--2007. The psi^prime to J/psi cross section ratio was measured in the range 0.55 < z < 0.9 and 60 < W < 190 GeV as a function of W, z and p_T. Here W denotes the photon-proton centre-of-mass energy, z is the fraction of the incident photon energy carried by the meson and p_T is the transverse momentum of the meson with respect to the beam axis. The J/psi cross sections were measured for 0.1 < z < 0.9, 60 < W < 240 GeV and p_T > 1 GeV. Theoretical predictions within the non-relativistic QCD framework including NLO colour--singlet and colour--octet contributions were compared to the data, as were predictions based on the k_T--factorisation approach.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of PT.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of W.
Cross section ratio PSIPRIME (PSI(2S)) to J/PSI as a function of Z.
The ALICE collaboration at the CERN Large Hadron Collider reports the first measurement of the inclusive differential jet cross section at mid-rapidity in pp collisions at $\sqrt{s} = 2.76$ TeV, with integrated luminosity of 13.6 nb$^{-1}$. Jets are measured over the transverse momentum range 20 to 125 GeV/c and are corrected to the particle level. Calculations based on Next-to-Leading Order perturbative QCD are in good agreement with the measurements. The ratio of inclusive jet cross sections for jet radii $R = 0.2$ and $R = 0.4$ is reported, and is also well reproduced by a Next-to-Leading Order perturbative QCD calculation when hadronization effects are included.
Inclusive differential jet cross section for R=0.2 and R=0.4.
Ratio of the inclusive differential jet cross section for R=0.2 and R=0.4.