Date

Search for a resonance decaying into a scalar particle and a Higgs boson in the final state with two bottom quarks and two photons in proton-proton collisions at a center of mass energy of 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
JHEP 11 (2024) 047, 2024.
Inspire Record 2779339 DOI 10.17182/hepdata.151649

A search for the resonant production of a heavy scalar $X$ decaying into a Higgs boson and a new lighter scalar $S$, through the process $X \to S(\to bb) H(\to \gamma\gamma)$, where the two photons are consistent with the Higgs boson decay, is performed. The search is conducted using an integrated luminosity of 140 fb$^{-1}$ of proton-proton collision data at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed over the mass range 170 $\leq$$m_{X}$$\leq$ 1000 GeV and 15 $\leq$$m_{S}$$\leq$ 500 GeV. Parameterised neural networks are used to enhance the signal purity and to achieve continuous sensitivity in a domain of the ($m_{X}$, $m_{S}$) plane. No significant excess above the expected background is found and 95% CL upper limits are set on the cross section times branching ratio, ranging from 39 fb to 0.09 fb. The largest deviation from the background-only expectation occurs for ($m_{X}$, $m_{S}$) = (575, 200) GeV with a local (global) significance of 3.5 (2.0) standard deviations.

6 data tables

Number of events for the 2 b-jet process category obtained from a background-only fit to data in the signal region and sideband. In the signal region the yield in the most signal-like bin of the PNN distribution, parameterised to the signal point mass (mX, mS) = (250, 100) GeV, is also provided. The uncertainties are symmetrised around the central value. The uncertainty in the total background is calculated taking correlations between the individual contributions into account. For the single Higgs boson processes, 'Other' includes the following production modes: VBF, WH, tHq, and tHW.

Number of events for the 1 b-jet process category obtained from a background-only fit to data in the signal region and sideband. In the signal region the yield in the most signal-like bin of the PNN distribution, parameterised to the signal point mass (mX, mS) = (1000, 70) GeV, is also provided. The uncertainties are symmetrised around the central value. The uncertainty in the total background is calculated taking correlations between the individual contributions into account. For the single Higgs boson processes, 'Other' includes the following production modes: VBF, WH, tHq, and tHW.

Expected and observed 95% CL upper limits on the signal cross section times the branching ratio of X → SH → b b $\gamma \gamma$ shown in the (mX, mS) plane, for each evaluated point. The values of the expected limit one and two standard deviations from the nominal value are also shown. The band at mS = 125 GeV is not included as these signal points are equivalent to those already probed in Phys. Rev. D 106 (2022) 052001.

More…

Measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range 0.62-3.50 GeV at Belle II

The Belle-II collaboration Adachi, I. ; Aggarwal, L. ; Aihara, H. ; et al.
Phys.Rev.D 110 (2024) 112005, 2024.
Inspire Record 2775022 DOI 10.17182/hepdata.155340

We report a measurement of the $e^+e^- \to \pi^+\pi^-\pi^0$ cross section in the energy range from 0.62 to 3.50 GeV using an initial-state radiation technique. We use an $e^+e^-$ data sample corresponding to 191 $\text{fb}^{-1}$ of integrated luminosity, collected at a center-of-mass energy at or near the $\Upsilon{(4S)}$ resonance with the Belle II detector at the SuperKEKB collider. Signal yields are extracted by fitting the two-photon mass distribution in $e^+e^- \to \pi^+\pi^-\pi^0\gamma$ events, which involve a $\pi^0 \to \gamma\gamma$ decay and an energetic photon radiated from the initial state. Signal efficiency corrections with an accuracy of 1.6% are obtained from several control data samples. The uncertainty on the cross section at the $\omega$ and $\phi$ resonances is dominated by the systematic uncertainty of 2.2%. The resulting cross sections in the 0.62-1.80 GeV energy range yield $ a_\mu^{3\pi} = [48.91 \pm 0.23~(\mathrm{stat}) \pm 1.07~(\mathrm{syst})] \times 10^{-10} $ for the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. This result differs by $2.5$ standard deviations from the most precise current determination.

5 data tables

Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 0.62--1.05~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.

Energy bin range ($\sqrt{s'}$), number of events after unfolding ($N_{\mathrm{unf}}$), corrected efficiency ($\varepsilon$), and cross section ($\sigma_{3\pi}$) for $e^{+}e^{-} \to \pi^{+} \pi^{-} \pi^{0}$ in energy range 1.05--3.50~GeV. The two uncertainties in the cross section are the statistical and systematic contributions. The statistical uncertainties for the unfolding and cross section are square roots of the diagonal components of the unfolding covariance matrix. The image shows Figure 23 in the PRD paper, and the points with error bars indicate the cross section in the table.

The statistic covariance matrix for the $e^+e^- \to \pi^+ \pi^- \pi^0$ cross section measurement at the Belle II. The 212 x 212 matrix of the energy ranges from 0.62 to 3.50 GeV. This covariance matrix, obtained by propagating the covariance matrix in the unfolding procedure, shows the total statistical uncertainties for the cross section results.

More…

Search for pair-produced higgsinos decaying via Higgs or $Z$ bosons to final states containing a pair of photons and a pair of $b$-jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 856 (2024) 138938, 2024.
Inspire Record 2773395 DOI 10.17182/hepdata.144072

A search is presented for the pair production of higgsinos $\tilde{\chi}$ in gauge-mediated supersymmetry models, where the lightest neutralinos $\tilde{\chi}_1^0$ decay into a light gravitino $\tilde{G}$ in association with either a Higgs $h$ or a $Z$ boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or $Z$ boson decays into a $b\bar{b}$ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the $b\bar{b}$ mass with the mass of the Higgs or $Z$ boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for $\tilde{\chi}_1^0\rightarrow h\tilde{G}$. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to $h\tilde{G}$ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple $b$-jets, targeting different decays of the electroweak bosons.

25 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Histograms:</b><ul> <li><a href=?table=Distribution1>Figure 3a: $m_{\gamma\gamma}$ Distribution in VR1</a> <li><a href=?table=Distribution2>Figure 3b: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR1</a> <li><a href=?table=Distribution3>Figure 3c: $m_{\gamma\gamma}$ Distribution in VR2</a> <li><a href=?table=Distribution4>Figure 3d: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR2</a> <li><a href=?table=Distribution5>Figure 4a: N-1 $m_{\gamma\gamma}$ Distribution for SR1h</a> <li><a href=?table=Distribution6>Figure 4b: N-1 $m_{\gamma\gamma}$ Distribution for SR1Z</a> <li><a href=?table=Distribution7>Figure 4c: N-1 $m_{\gamma\gamma}$ Distribution for SR2</a> <li><a href=?table=Distribution8>Auxiliary Figure 1: Signal and Validation Region Yields</a> </ul> <b>Tables:</b><ul> <li><a href=?table=YieldsTable1>Table 3: Signal Region Yields & Model-independent Limits</a> <li><a href=?table=Cutflow1>Auxiliary Table 1: Benchmark Signal Cutflows</a> </ul> <b>Cross section limits:</b><ul> <li><a href=?table=X-sectionU.L.1>Figure 5: 1D Cross-section Limits</a> <li><a href=?table=X-sectionU.L.2>Auxiliary Figure 3: 2D Cross-section Limits</a> </ul> <b>2D CL limits:</b><ul> <li><a href=?table=Exclusioncontour1>Figure 6: Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour2>Figure 6: $+1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour3>Figure 6: $-1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour4>Figure 6: Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour5>Figure 6: $+1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour6>Figure 6: $-1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> </ul> <b>2D Acceptance and Efficiency maps:</b><ul> <li><a href=?table=Acceptance1>Auxiliary Figure 4a: Acceptances SR1h</a> <li><a href=?table=Acceptance2>Auxiliary Figure 4b: Acceptances SR1Z</a> <li><a href=?table=Acceptance3>Auxiliary Figure 4c: Acceptances SR2</a> <li><a href=?table=Efficiency1>Auxiliary Figure 5a: Efficiencies SR1h</a> <li><a href=?table=Efficiency2>Auxiliary Figure 5b: Efficiencies SR1Z</a> <li><a href=?table=Efficiency3>Auxiliary Figure 5c: Efficiencies SR2</a> </ul>

Distribution of the diphoton invariant mass in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

Distribution of the missing transverse momentum in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

More…

Measurements of the production cross-section for a $Z$ boson in association with $b$- or $c$-jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Eur.Phys.J.C 84 (2024) 984, 2024.
Inspire Record 2771257 DOI 10.17182/hepdata.151815

This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.

29 data tables

Figure 6(left) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.

Figure 6(right) of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 2 $ b-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.

Figure 7 of the article. Measured fiducial cross sections for events with $Z (\rightarrow ll) \ge 1 $ c-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.

More…

Search for charged-lepton-flavour violating $\mu\tau qt$ interactions in top-quark production and decay in $pp$ collisions at $\sqrt{s}= 13$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 012014, 2024.
Inspire Record 2767173 DOI 10.17182/hepdata.151734

A search for charged-lepton-flavour violating $\mu\tau qt$ ($q=u,c$) interactions is presented, considering both top-quark production and decay. The data analysed correspond to 140 $\textrm{fb}^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}= $13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The analysis targets events containing two muons with the same electric charge, a hadronically decaying $\tau$-lepton and at least one jet, with exactly one $b$-tagged jet, produced by a $\mu\tau qt$ interaction. Agreement with the Standard Model expectation within $1.6\sigma$ is observed, and limits are set at the 95% CL on the charged-lepton-flavour violation branching ratio of $\mathcal{B}(t \to \mu\tau q) < 8.7 \times 10^{-7}$. An Effective Field Theory interpretation is performed yielding 95% CL limits on Wilson coefficients, dependent on the flavour of the associated light quark and the Lorentz structure of the coupling. These range from $|c_{\mathsf{lequ}}^{3(2313)}| / \Lambda^{2} < 0.10\textrm{ TeV}^{-2}$ for $\mu\tau ut$ to $|c_{\mathsf{ lequ}}^{1(2323)}| / \Lambda^{2} < 1.8\textrm{ TeV}^{-2}$ for $\mu\tau ct$. An additional interpretation is performed for scalar leptoquark production inducing charged lepton flavour violation, with fixed inter-generational couplings. Upper limits on leptoquark coupling strengths are set at the 95% CL, ranging from $\lambda^{\textrm{LQ}} = $1.3 to $\lambda^{\textrm{LQ}} = $3.7 for leptoquark masses between 0.5 and 2.0 TeV.

18 data tables

Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.

Observed event yields in $\textrm{CR}t\bar{t}\mu$ compared with post-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively.

Observed event yields in $\textrm{SR}$ compared with pre-fit expectations from Monte Carlo simulations, as a function of the scalar sum of lepton and jet transverse momenta, $H_{\mathrm{T}}$. The last bin includes overflow events. `Signal (prod.)' and `Signal (dec.)' refer to the single-top-quark production and top-quark pair decay signal contributions, respectively. The pre-fit signal yield represents all Wilson coefficients set to 0.1 simultaneously for a new physics scale of $\Lambda=1$ TeV.

More…

Measurement of $t$-channel production of single top quarks and antiquarks in $pp$ collisions at 13 TeV using the full ATLAS Run 2 data sample

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 05 (2024) 305, 2024.
Inspire Record 2764820 DOI 10.17182/hepdata.150693

The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV at the LHC using $140\,\mathrm{fb^{-1}}$ of ATLAS data. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The predictions at next-to-next-to-leading-order in quantum chromodynamics are in good agreement with these measurements. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared with the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measured cross-sections are interpreted in an effective field theory approach, setting limits at the 95% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{Qq}^{3,1}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{3}/\Lambda^2 < 1.42$. The constraint $|V_{tb}|>0.95$ at the 95% confidence level is derived from the measured value of $\sigma(tq+\bar{t}q)$. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces.

21 data tables

The 17 variables used for the training of the NN ordered by their discriminating power. The jet that is not \(b\)-tagged is referred to as the untagged jet. The charged lepton is denoted \(\ell\). The sphericity tensor \(S^{\alpha\beta}\) used to define the sphericity \(S\) is formed with the three-momenta \(\vec{p}_i\) of the reconstructed objects, namely the jets, the charged lepton and the reconstructed neutrino. The tensor is given by \(S^{\alpha\beta}=\frac{\sum_i p_i^\alpha p_i^\beta}{\sum_i |\vec{p}_i|^2}\) where \(\alpha\) and \(\beta\) correspond to the spatial components $x$, $y$ and $z$.

The impact of different groups of systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\), \(\sigma(tq + \bar t q)\) and \(R_t\), given in %.

The impact of the eight most important systematic uncertainties on the \(\sigma(tq)\) , \(\sigma(\bar t q)\) and \(\sigma(tq + \bar t q)\), given in %. The sequence of the uncertainties is given by the impact on \(\sigma(tq + \bar t q)\)

More…

Studies of the energy dependence of diboson polarization fractions and the Radiation Amplitude Zero effect in WZ production with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 133 (2024) 101802, 2024.
Inspire Record 2762099 DOI 10.17182/hepdata.149992

This Letter presents the first study of the energy-dependence of diboson polarization fractions in $WZ \rightarrow \ell\nu \ell'\ell'~(\ell, \ell'=e, \mu)$ production. The data set used corresponds to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector. Two fiducial regions with an enhanced presence of events featuring two longitudinally-polarized bosons are defined. A non-zero fraction of events with two longitudinally-polarized bosons is measured with an observed significance of 5.2 standard deviations in the region with $100<p_T^Z\leq200$ GeV and 1.6 standard deviations in the region with $p_T^Z>200$ GeV, where $p_T^Z$ is the transverse momentum of the $Z$ boson. This Letter also reports the first study of the Radiation Amplitude Zero effect. Events with two transversely-polarized bosons are analyzed for the $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$ distributions defined respectively as the rapidity difference between the lepton from the $W$ boson decay and the $Z$ boson and the rapidity difference between the $W$ boson and the $Z$ boson. Significant suppression of events near zero is observed in both distributions. Unfolded $\Delta Y(\ell_W Z)$ and $\Delta Y(WZ)$ distributions are also measured and compared to theoretical predictions.

45 data tables

Polarization fractions in the region with $100<p_T^Z\leq200$ GeV using three unconstrained parameters.

Polarization fractions in the region with $p_T^Z>200$ GeV using three unconstrained parameters.

Fraction of events where both bosons are longitudinally polarized in the region with $100<p_T^Z\leq200$ GeV using two unconstrained parameters.

More…

Search for high-mass resonances in final states with a $\tau$-lepton and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 109 (2024) 112008, 2024.
Inspire Record 2762382 DOI 10.17182/hepdata.146026

A search for high-mass resonances decaying into a $\tau$-lepton and a neutrino using proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV is presented. The full Run 2 data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment in the years 2015-2018 is analyzed. The $\tau$-lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between the $\tau$-lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on the $W^\prime\to \tau \nu$ production cross-section. Heavy $W^\prime$ vector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard Model $W$ boson. For non-universal couplings, $W^\prime$ bosons are excluded for masses less than 3.5-5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross-section times branching ratio are determined as a function of the lower threshold on the transverse mass of the $\tau$-lepton and missing transverse momentum.

8 data tables

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\theta$ = 5.5) $W^{\prime}$ signals with masses of 4 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.

Observed and expected 95% CL upper limits on cross section times $\tau\nu$ branching fraction for $W^{\prime}_{\rm SSM}$.

Regions of the non-universal parameter space excluded at 95% CL.

More…

A search for top-squark pair production, in final states containing a top quark, a charm quark and missing transverse momentum, using the 139 fb$^{-1}$ of $pp$ collision data collected by the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2024) 250, 2024.
Inspire Record 2759516 DOI 10.17182/hepdata.144439

This paper presents a search for top-squark pair production in final states with a top quark, a charm quark and missing transverse momentum. The data were collected with the ATLAS detector during LHC Run 2 and corresponds to an integrated luminosity of 139fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. The analysis is motivated by an extended Minimal Supersymmetric Standard Model featuring a non-minimal flavour violation in the second- and third-generation squark sector. The top squark in this model has two possible decay modes, either $\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0$ or $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$, where the $\tilde{\chi}_1^0$ is undetected. The analysis is optimised assuming that both of the decay modes are equally probable, leading to the most likely final state of $tc + E_{\text{T}}^{\text{miss}}$. Good agreement is found between the Standard Model expectation and the data in the search regions. Exclusion limits at 95% CL are obtained in the $m(\tilde{t}_1)$ vs $m(\tilde{\chi}_1^0)$ plane and, in addition, limits on the branching ratio of the $\tilde{t}_1\rightarrow t\tilde{\chi}_1^0$ decay as a function of $m(\tilde{t}_1)$ are also produced. Top-squark masses of up to 800 GeV are excluded for scenarios with light neutralinos, and top-squark masses up to 600 GeV are excluded in scenarios where the neutralino and the top squark are almost mass degenerate.

66 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=mass_obs">Observed exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_exp">Expected exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_band_1">$\pm1\sigma$ exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=mass_band_2">$\pm1\sigma$ exclusion contour in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_obs">Observed exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_exp">Expected exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_band_1">$\pm1\sigma$ exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> <li><a href="?table=br_m1_band_2">$\pm1\sigma$ exclusion contour in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=mass_upperLimits_obs">Observed upper limits on the top-spartner pair production cross-section at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_upperLimits_obs">Observed upper limits on the top-spartner pair production cross-section at the 95% CL in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$.</a> <li><a href="?table=mass_upperLimits_exp">Expected upper limits on the top-spartner pair production cross-section at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$</a> <li><a href="?table=br_m1_upperLimits_exp">Expected upper limits on the top-spartner pair production cross-section at the 95% CL in the $m_{\tilde{t}_1} - $BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1)$ plane, assuming $m_{\tilde\chi^0_1} = 1 \mathrm{GeV}$.</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=SRA_ntop">SRA region number of top-tagged jets distribution</a> <li><a href="?table=SRA_mttwo">SRA region $m_{\mathrm{T2}}(j^{b}_{R=1.0}, c)$ distribution</a> <li><a href="?table=SRB_ptc">SRB region leading c-tagged jet $p_{\mathrm{T}}$</a> <li><a href="?table=SRB_mtj">SRB region $m_{\mathrm{T}}(j, E_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{close}}$ distribution</a> <li><a href="?table=SRC_metsig">SRC region missing transverse momentum significance distribution</a> <li><a href="?table=SRC_mtj">SRC region $m_{\mathrm{T}}(j, E_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{close}}$ distribution</a> <li><a href="?table=SRD_NN">SRD NN signal score distribution</a> <li><a href="?table=SRD_meff">SRD $m_{\mathrm{eff}}$ distribution</a> </ul> <b>Pull distributions:</b> <ul> <li><a href="?table=SRABCPull">Pull plots showing the SRA, SRB and SRC post-fit data and SM agreement using the background-only fit configuration</a> <li><a href="?table=SRDPull">Pull plots showing the SRD post-fit data and SM agreement using the background-only fit configuration</a> </ul> <b>Cut flows:</b> <ul> <li><a href="?table=cutflow_SRA">Cutflow of 3 signal points in the SRA region.</a> <li><a href="?table=cutflow_SRB">Cutflow of 3 signal points in the SRB region.</a> <li><a href="?table=cutflow_SRC">Cutflow of 3 signal points in the SRC region.</a> <li><a href="?table=cutflow_SRD750">Cutflow of 3 signal points in the SRD750 region.</a> <li><a href="?table=cutflow_SRD1000">Cutflow of 3 signal points in the SRD1000 region.</a> <li><a href="?table=cutflow_SRD1250">Cutflow of 3 signal points in the SRD1250 region.</a> <li><a href="?table=cutflow_SRD1500">Cutflow of 3 signal points in the SRD1500 region.</a> <li><a href="?table=cutflow_SRD1750">Cutflow of 3 signal points in the SRD1750 region.</a> <li><a href="?table=cutflow_SRD2000">Cutflow of 3 signal points in the SRD2000 region.</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li> <b>SRA_bin1:</b> <a href="?table=Acc_SRA_bin1">Acceptance table of the SRA$^{[450,575]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRA_bin1">Efficiency table of the SRA$^{[450,575]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRA_bin2:</b> <a href="?table=Acc_SRA_bin2">Acceptance table of the SRA$^{\geq 575}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRA_bin2">Efficiency table of the SRA$^{\geq 575}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin1:</b> <a href="?table=Acc_SRB_bin1">Acceptance table of the SRB$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin1">Efficiency table of the SRB$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin2:</b> <a href="?table=Acc_SRB_bin2">Acceptance table of the SRB$^{[150,400]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin2">Efficiency table of the SRB$^{[150,400]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRB_bin3:</b> <a href="?table=Acc_SRB_bin3">Acceptance table of the SRB$^{\geq 400}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRB_bin3">Efficiency table of the SRB$^{\geq 400}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin1:</b> <a href="?table=Acc_SRC_bin1">Acceptance table of the SRC$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin1">Efficiency table of the SRC$^{[100,150]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin2:</b> <a href="?table=Acc_SRC_bin2">Acceptance table of the SRC$^{[150,300]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin2">Efficiency table of the SRC$^{[150,300]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin3:</b> <a href="?table=Acc_SRC_bin3">Acceptance table of the SRC$^{[300,500]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin3">Efficiency table of the SRC$^{[300,500]}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRC_bin4:</b> <a href="?table=Acc_SRC_bin4">Acceptance table of the SRC$^{\geq 500}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRC_bin4">Efficiency table of the SRC$^{\geq 500}$ in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin1:</b> <a href="?table=Acc_SRD_bin1">Acceptance table of the SRD750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin1">Efficiency table of the SRD750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin2:</b> <a href="?table=Acc_SRD_bin2">Acceptance table of the SRD1000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin2">Efficiency table of the SRD1000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin3:</b> <a href="?table=Acc_SRD_bin3">Acceptance table of the SRD1250 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin3">Efficiency table of the SRD1250 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin4:</b> <a href="?table=Acc_SRD_bin4">Acceptance table of the SRD1500 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin4">Efficiency table of the SRD1500 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin5:</b> <a href="?table=Acc_SRD_bin5">Acceptance table of the SRD1750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin5">Efficiency table of the SRD1750 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <li> <b>SRD_bin6:</b> <a href="?table=Acc_SRD_bin6">Acceptance table of the SRD2000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> <a href="?table=Eff_SRD_bin6">Efficiency table of the SRD2000 in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.</a> </ul> <b>Truth Code snippets</b> are available under "Resources" (purple button on the left)

Observed exclusion limits at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$.

Observed exclusion limits at the 95% CL in the $\tilde{t}_1 - \tilde\chi^0_1$ mass plane, assuming BR$(\tilde{t}_1 \rightarrow t + \tilde\chi^0_1) = 0.5$ and a $+1 \sigma$ deviation of the NNLO+NNLL theoretical cross-section of a $\tilde{t}_1$ pair-production.

More…

A statistical combination of ATLAS Run 2 searches for charginos and neutralinos at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 133 (2024) 031802, 2024.
Inspire Record 2758009 DOI 10.17182/hepdata.149530

Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using $139\,$fb$^{-1}$ of $pp$ collision data at $\sqrt{s}=13\,$TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or higgsino production decaying via Standard Model $W$, $Z$, or $h$ bosons are combined to extend the mass reach to the produced SUSY particles by 30-100 GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% CL cross-section upper limits by 15%-40%.

38 data tables

Expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

$+1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

$-1\sigma$ expected 95% CL exclusion limits on the simplified models of chargino-pair production decaying via W bosons.

More…