Date

Elastic differential cross-section ${\rm d}\sigma/{\rm d}t$ at $\sqrt{s}=$2.76 TeV and implications on the existence of a colourless 3-gluon bound state

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
Eur.Phys.J.C 80 (2020) 91, 2020.
Inspire Record 1710347 DOI 10.17182/hepdata.127943

The proton-proton elastic differential cross section ${\rm d}\sigma/{\rm d}t$ has been measured by the TOTEM experiment at $\sqrt{s}=2.76$ TeV energy with $\beta^{*}=11$ m beam optics. The Roman Pots were inserted to 13 times the transverse beam size from the beam, which allowed to measure the differential cross-section of elastic scattering in a range of the squared four-momentum transfer ($|t|$) from $0.36$ GeV$^{2}$ to $0.74$ GeV$^{2}$. The differential cross-section can be described with an exponential in the $|t|$-range between $0.36$ GeV$^{2}$ and $0.54$ GeV$^{2}$, followed by a diffractive minimum (dip) at $|t_{\rm dip}| = 0.61 \pm 0.03$ GeV$^{2}$ and a subsequent maximum (bump). The ratio of the ${\rm d}\sigma/{\rm d}t$ at the bump and at the dip is $1.7\pm 0.2$. When compared to the $\rm p\bar{p}$ measurement of the D0 experiment at $\sqrt s = 1.96$ TeV, a significant difference can be observed. Under the condition that the effects due to the energy difference between TOTEM and D0 can be neglected, the result provides evidence for a colourless 3-gluon bound state exchange in the $t$-channel of the proton-proton elastic scattering.

2 data tables

Differential cross-section.

Differential cross-section.


Elastic differential cross-section measurement at $\sqrt{s}=13$ TeV by TOTEM

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
Eur.Phys.J.C 79 (2019) 861, 2019.
Inspire Record 1710340 DOI 10.17182/hepdata.127944

The TOTEM collaboration has measured the elastic proton-proton differential cross section ${\rm d}\sigma/{\rm d}t$ at $\sqrt{s}=13$ TeV LHC energy using dedicated $\beta^{*}=90$ m beam optics. The Roman Pot detectors were inserted to 10$\sigma$ distance from the LHC beam, which allowed the measurement of the range $[0.04$ GeV$^{2};4 $GeV$^{2}] $ in four-momentum transfer squared $|t|$. The efficient data acquisition allowed to collect about 10$^{9}$ elastic events to precisely measure the differential cross-section including the diffractive minimum (dip), the subsequent maximum (bump) and the large-$|t|$ tail. The average nuclear slope has been found to be $B=(20.40 \pm 0.002^{\rm stat} \pm 0.01^{\rm syst})~$GeV$^{-2}$ in the $|t|$-range $0.04~$GeV$^{2}$ to $0.2~$GeV$^{2}$. The dip position is $|t_{\rm dip}|=(0.47 \pm 0.004^{\rm stat} \pm 0.01^{\rm syst})~$GeV$^{2}$. The differential cross section ratio at the bump vs. at the dip $R=1.77\pm0.01^{\rm stat}$ has been measured with high precision. The series of TOTEM elastic pp measurements show that the dip is a permanent feature of the pp differential cross-section at the TeV scale.

1 data table

Differential cross-section.


Version 2
Sub-threshold production of K$^{0}_{s}$ mesons and ${\Lambda}$ hyperons in Au(1.23A GeV)$+$Au

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Phys.Lett.B 793 (2019) 457-463, 2019.
Inspire Record 1709767 DOI 10.17182/hepdata.90954

We present first data on sub-threshold production of K0 s mesons and {\Lambda} hyperons in Au+Au collisions at $\sqrt{s_{NN}}$ = 2.4 GeV. We observe an universal scaling of hadrons containing strangeness, independent of their corresponding production thresholds. Comparing the yields, their scaling, and the shapes of the rapidity and the pt spectra to state-of-the-art transport model (UrQMD, HSD, IQMD) predictions, we find that none of the latter can simultaneously describe all observables with reasonable \c{hi}2 values.

18 data tables

Example of $K^{0}_{S}$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $80-120 MeV/c^{2}$.

Example of $\Lambda$ signal for 0-40% most central events, over mixed-event background for the bin $-0.05 < y_{cm} < 0.05$ and reduced transverse masses between $100-150 MeV/c^{2}$.

Reduced transverse mass ($m_{t}-m_{0}$) spectra of $K^{0}_{S}$ for the 0-40% most central events. NOTE: The spectra are not scaled by $1/N_{Events}$! To compare the data, divide by $N_{Events} = 2.1997626 x 10^{9}$

More…

Search for heavy long-lived multi-charged particles in proton-proton collisions at $\sqrt{s}$ = 13 TeV using the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052003, 2019.
Inspire Record 1707957 DOI 10.17182/hepdata.85615

A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data with an integrated luminosity of 36.1 fb$^{-1}$ collected in 2015 and 2016 from proton-proton collisions at $\sqrt{s}$ = 13 TeV are examined. Particles producing anomalously high ionization, consistent with long-lived massive particles with electric charges from |q|=2e to |q|=7e, are searched for. No events are observed, and 95% confidence level cross-section upper limits are interpreted as lower mass limits for a Drell-Yan production model. Multi-charged particles with masses between 50 GeV and 980-1220 GeV (depending on their electric charge) are excluded.

3 data tables

The signal efficiency values versus mass values for different charges.

Expected cross-section upper limits on the production cross-section of MCPs as a function of simulated particle mass for different charges.

Observed cross-section upper limits on the production cross-section of MCPs as a function of simulated particle mass for different charges.


Measurements of inclusive and differential fiducial cross-sections of $t\bar{t}\gamma$ production in leptonic final states at $\sqrt{s}$ = 13 TeV in ATLAS

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 79 (2019) 382, 2019.
Inspire Record 1707015 DOI 10.17182/hepdata.88061

Inclusive and differential cross-sections for the production of a top-quark pair in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 36.1 fb$^{-1}$, collected by the ATLAS detector at the LHC in 2015 and 2016 at a centre-of-mass energy of 13 TeV. The measurements are performed in single-lepton and dilepton final states in a fiducial volume. Events with exactly one photon, one or two leptons, a channel-dependent minimum number of jets, and at least one $b$-jet are selected. Neural network algorithms are used to separate the signal from the backgrounds. The fiducial cross-sections are measured to be 521 $\pm$ 9(stat.) $\pm$ 41(sys.) fb and 69 $\pm$ 3(stat.) $\pm$ 4(sys.) fb for the single-lepton and dilepton channels, respectively. The differential cross-sections are measured as a function of photon transverse momentum, photon absolute pseudorapidity, and angular distance between the photon and its closest lepton in both channels, as well as azimuthal opening angle and absolute pseudorapidity difference between the two leptons in the dilepton channel. All measurements are in agreement with the theoretical predictions.

20 data tables

The measured fiducial cross section in the single lepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured fiducial cross section in the dilepton channel. The first uncertainty is the statistical uncertainty and the second one is the systematic uncertainty.

The measured normalized differential cross section as a function of the photon pT in the single lepton channel. The uncertainty is decomposed into five components which are the signal modelling uncertainty, the experimental uncertainty, the ttbar modelling uncertainty, the other background estimation uncertainty, and the data statistical uncertainty.

More…

Measurements of fiducial and differential cross-sections of $t\bar{t}$ production with additional heavy-flavour jets in proton-proton collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 04 (2019) 046, 2019.
Inspire Record 1705857 DOI 10.17182/hepdata.87098

This paper presents measurements of $t\bar{t}$ production in association with additional $b$-jets in $pp$ collisions at the LHC at a centre-of-mass energy of 13 TeV. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. Fiducial cross-section measurements are performed in the dilepton and lepton-plus-jets $t\bar{t}$ decay channels. Results are presented at particle level in the form of inclusive cross-sections of $t\bar{t}$ final states with three and four $b$-jets as well as differential cross-sections as a function of global event properties and properties of $b$-jet pairs. The measured inclusive fiducial cross-sections generally exceed the $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower but are compatible within the total uncertainties. The experimental uncertainties are smaller than the uncertainties in the predictions. Comparisons of state-of-the-art theoretical predictions with the differential measurements are shown and good agreement with data is found for most of them.

50 data tables

The measured fiducial cross sections

The measured fiducial cross sections

Relative differential cross section as a function of the b-jet multiplicity in emu channel

More…

Search for long-lived particles produced in $pp$ collisions at $\sqrt{s}=13$ TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 99 (2019) 052005, 2019.
Inspire Record 1704138 DOI 10.17182/hepdata.85748

A search for the decay of neutral, weakly interacting, long-lived particles using data collected by the ATLAS detector at the LHC is presented. The analysis in this paper uses 36.1 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV recorded in 2015-2016. The search employs techniques for reconstructing vertices of long-lived particles decaying into jets in the muon spectrometer exploiting a two vertex strategy and a novel technique that requires only one vertex in association with additional activity in the detector that improves the sensitivity for longer lifetimes. The observed numbers of events are consistent with the expected background and limits for several benchmark signals are determined.

122 data tables

- - - - - - - - - - - - - - - - - - - - <br/><b>Muon RoI Cluster trigger efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table1">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table2">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table3">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table4">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table5">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table6">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table7">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table8">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table9">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table10">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table11">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table12">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table13">Endcaps </a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table14">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table15">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table16">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table17">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table18">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table19">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table20">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table21">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table22">Endcaps</a> <br/><b>MS vertex efficiency:</b> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table23">Barrel</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table24">Barrel</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table25">Barrel</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table26">Barrel</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table27">Barrel</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table28">Barrel</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table29">Barrel</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table30">Barrel</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table31">Barrel</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table32">Barrel</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table33">Barrel</a> <br/><i>mPhi=100:</i> <a href="85748?version=1&table=Table34">Endcaps</a> <i>mPhi=125:</i> <a href="85748?version=1&table=Table35">Endcaps</a> <br/><i>mPhi=200:</i> <a href="85748?version=1&table=Table36">Endcaps</a> <i>mPhi=400:</i> <a href="85748?version=1&table=Table37">Endcaps</a> <br/><i>mPhi=600:</i> <a href="85748?version=1&table=Table38">Endcaps</a> <i>mPhi=1000:</i> <a href="85748?version=1&table=Table39">Endcaps</a> <br/><i>Stealth SUSY:</i> <a href="85748?version=1&table=Table40">Endcaps</a> <br/><i>Baryogenesis nubb:</i> <a href="85748?version=1&table=Table41">Endcaps</a> <i>Baryogenesis cbs:</i> <a href="85748?version=1&table=Table42">Endcaps</a> <br/><i>Baryogenesis lcb:</i> <a href="85748?version=1&table=Table43">Endcaps</a> <i>Baryogenesis tautaunu:</i> <a href="85748?version=1&table=Table44">Endcaps</a> <br/><b>Exclusion limits:</b> <br/><i>mPhi=125, mS=5:</i> <a href="85748?version=1&table=Table45">2Vx</a> <a href="85748?version=1&table=Table46">1Vx</a> <a href="85748?version=1&table=Table47">Combined</a> <br/><i>mPhi=125, mS=8:</i> <a href="85748?version=1&table=Table48">2Vx</a> <a href="85748?version=1&table=Table49">1Vx</a> <a href="85748?version=1&table=Table50">Combined</a> <br/><i>mPhi=125, mS=15:</i> <a href="85748?version=1&table=Table51">2Vx</a> <a href="85748?version=1&table=Table52">1Vx</a> <a href="85748?version=1&table=Table53">Combined</a> <br/><i>mPhi=125, mS=25:</i> <a href="85748?version=1&table=Table54">2Vx</a> <a href="85748?version=1&table=Table55">1Vx</a> <a href="85748?version=1&table=Table56">Combined</a> <br/><i>mPhi=125, mS=40:</i> <a href="85748?version=1&table=Table57">2Vx</a> <a href="85748?version=1&table=Table58">1Vx</a> <a href="85748?version=1&table=Table59">Combined</a> <br/><i>Stealth SUSY mG=250:</i> <a href="85748?version=1&table=Table60">2Vx</a> <br/><i>Stealth SUSY mG=500:</i> <a href="85748?version=1&table=Table61">2Vx</a> <a href="85748?version=1&table=Table62">1Vx</a> <a href="85748?version=1&table=Table63">Combined</a> <br/><i>Stealth SUSY mG=800:</i> <a href="85748?version=1&table=Table64">2Vx</a> <a href="85748?version=1&table=Table65">1Vx</a> <a href="85748?version=1&table=Table66">Combined</a> <br/><i>Stealth SUSY mG=1200:</i> <a href="85748?version=1&table=Table67">2Vx</a> <a href="85748?version=1&table=Table68">1Vx</a> <a href="85748?version=1&table=Table69">Combined</a> <br/><i>Stealth SUSY mG=1500:</i> <a href="85748?version=1&table=Table70">2Vx</a> <a href="85748?version=1&table=Table71">1Vx</a> <a href="85748?version=1&table=Table72">Combined</a> <br/><i>Stealth SUSY mG=2000:</i> <a href="85748?version=1&table=Table73">2Vx</a> <a href="85748?version=1&table=Table74">1Vx</a> <a href="85748?version=1&table=Table75">Combined</a> <br/><i>mPhi=100, mS=8:</i> <a href="85748?version=1&table=Table76">2Vx</a> <br/><i>mPhi=100, mS=25:</i> <a href="85748?version=1&table=Table77">2Vx</a> <br/><i>mPhi=200, mS=8:</i> <a href="85748?version=1&table=Table78">2Vx</a> <br/><i>mPhi=200, mS=25:</i> <a href="85748?version=1&table=Table79">2Vx</a> <br/><i>mPhi=200, mS=50:</i> <a href="85748?version=1&table=Table80">2Vx</a> <br/><i>mPhi=400, mS=50:</i> <a href="85748?version=1&table=Table81">2Vx</a> <br/><i>mPhi=400, mS=100:</i> <a href="85748?version=1&table=Table82">2Vx</a> <br/><i>mPhi=600, mS=50:</i> <a href="85748?version=1&table=Table83">2Vx</a> <br/><i>mPhi=600, mS=150:</i> <a href="85748?version=1&table=Table84">2Vx</a> <br/><i>mPhi=1000, mS=50:</i> <a href="85748?version=1&table=Table85">2Vx</a> <br/><i>mPhi=1000, mS=150:</i> <a href="85748?version=1&table=Table86">2Vx</a> <br/><i>mPhi=1000, mS=400:</i> <a href="85748?version=1&table=Table87">2Vx</a> <br/><i>Baryogenesis nubb, mChi=10</i> <a href="85748?version=1&table=Table88">2Vx</a> <a href="85748?version=1&table=Table89">1Vx</a> <a href="85748?version=1&table=Table90">Combined</a> <br/><i>Baryogenesis nubb, mChi=30</i> <a href="85748?version=1&table=Table91">2Vx</a> <a href="85748?version=1&table=Table92">1Vx</a> <a href="85748?version=1&table=Table93">Combined</a> <br/><i>Baryogenesis nubb, mChi=50</i> <a href="85748?version=1&table=Table94">2Vx</a> <a href="85748?version=1&table=Table95">1Vx</a> <a href="85748?version=1&table=Table96">Combined</a> <br/><i>Baryogenesis nubb, mChi=100</i> <a href="85748?version=1&table=Table97">2Vx</a> <br/><i>Baryogenesis cbs, mChi=10</i> <a href="85748?version=1&table=Table98">2Vx</a> <a href="85748?version=1&table=Table99">1Vx</a> <a href="85748?version=1&table=Table100">Combined</a> <br/><i>Baryogenesis cbs, mChi=30</i> <a href="85748?version=1&table=Table101">2Vx</a> <a href="85748?version=1&table=Table102">1Vx</a> <a href="85748?version=1&table=Table103">Combined</a> <br/><i>Baryogenesis cbs, mChi=50</i> <a href="85748?version=1&table=Table104">2Vx</a> <a href="85748?version=1&table=Table105">1Vx</a> <a href="85748?version=1&table=Table106">Combined</a> <br/><i>Baryogenesis cbs, mChi=100</i> <a href="85748?version=1&table=Table107">2Vx</a> <br/><i>Baryogenesis lcb, mChi=10</i> <a href="85748?version=1&table=Table108">2Vx</a> <a href="85748?version=1&table=Table109">1Vx</a> <a href="85748?version=1&table=Table110">Combined</a> <br/><i>Baryogenesis lcb, mChi=30</i> <a href="85748?version=1&table=Table111">2Vx</a> <a href="85748?version=1&table=Table112">1Vx</a> <a href="85748?version=1&table=Table113">Combined</a> <br/><i>Baryogenesis lcb, mChi=50</i> <a href="85748?version=1&table=Table114">2Vx</a> <a href="85748?version=1&table=Table115">1Vx</a> <a href="85748?version=1&table=Table116">Combined</a> <br/><i>Baryogenesis lcb, mChi=100</i> <a href="85748?version=1&table=Table117">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=10</i> <a href="85748?version=1&table=Table118">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=30</i> <a href="85748?version=1&table=Table119">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=50</i> <a href="85748?version=1&table=Table120">2Vx</a> <br/><i>Baryogenesis tatanu, mChi=100</i> <a href="85748?version=1&table=Table121">2Vx</a>

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=100$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

Barrel Muon RoI Cluster trigger efficiencies (in %) for $m_{\Phi}=125$ GeV scalar benchmark samples. The trigger efficiency is defined as the fraction of LLPs selected by the Muon RoI Cluster trigger as a function of the LLP decay position. The trigger is efficient for hadronic decays of LLPs that occur anywhere from the outer regions of the HCal to the middle station of the MS. These efficiencies are obtained from the subset of events with only a single LLP decay in the muon spectrometer in order to ensure that the result of the trigger is due to a single burst of MS activity. The uncertainties shown are statistical only. The relative differences in efficiencies of the benchmark samples are a result of the different kinematics.

More…

Experimental study of the $\gamma p\rightarrow K^0\Sigma^+$, $\gamma n\rightarrow K^0\Lambda$, and $\gamma n\rightarrow K^0 \Sigma^0$ reactions at the Mainz Microtron

The A2 collaboration Akondi, C.S. ; Bantawa, K. ; Manley, D.M. ; et al.
Eur.Phys.J.A 55 (2019) 202, 2019.
Inspire Record 1703675 DOI 10.17182/hepdata.130236

This work measured $d\sigma/d\Omega$ for neutral kaon photoproduction reactions from threshold up to a c.m.\ energy of 1855MeV, focussing specifically on the $\gamma p\rightarrow K^0\Sigma^+$, $\gamma n\rightarrow K^0\Lambda$, and $\gamma n\rightarrow K^0 \Sigma^0$ reactions. Our results for $\gamma n\rightarrow K^0 \Sigma^0$ are the first-ever measurements for that reaction. These data will provide insight into the properties of $N^*$ resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $\pi N$ channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions.

28 data tables

Total cross section as a function of c.m. energy W.

Total cross section as a function of c.m. energy W.

Total cross section as a function of c.m. energy W.

More…

Search for the production of a long-lived neutral particle decaying within the ATLAS hadronic calorimeter in association with a $Z$ boson from $pp$ collisions at $\sqrt{s} = 13$ TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.Lett. 122 (2019) 151801, 2019.
Inspire Record 1702261 DOI 10.17182/hepdata.83963

This Letter presents a search for the production of a long-lived neutral particle ($Z_d$) decaying within the ATLAS hadronic calorimeter, in association with a Standard Model (SM) $Z$ boson produced via an intermediate scalar boson, where $Z\to l^+l^-$ ($l=e,\mu$). The data used were collected by the ATLAS detector during 2015 and 2016 $pp$ collisions with a center-of-mass energy of $\sqrt{s} = 13$ TeV at the Large Hadron Collider and corresponds to an integrated luminosity of $36.1\pm0.8$ fb$^{-1}$. No significant excess of events is observed above the expected background. Limits on the production cross section of the scalar boson times its decay branching fraction into the long-lived neutral particle are derived as a function of the mass of the intermediate scalar boson, the mass of the long-lived neutral particle, and its $c\tau$ from a few centimeters to one hundred meters. In the case that the intermediate scalar boson is the SM Higgs boson, its decay branching fraction to a long-lived neutral particle with a $c\tau$ approximately between 0.1 m and 7 m is excluded with a 95% confidence level up to 10% for $m_{Z_d}$ between 5 and 15 GeV.

1 data table

The product of acceptance and efficiency for all signal MC samples.


Measurement of the $ Z\gamma \to \nu \overline{\nu}\gamma $ production cross section in pp collisions at $ \sqrt{s}=13 $ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 12 (2018) 010, 2018.
Inspire Record 1698006 DOI 10.17182/hepdata.83965

The production of $Z$ bosons in association with a high-energy photon ($Z\gamma$ production) is studied in the neutrino decay channel of the $Z$ boson using $pp$ collisions at $\sqrt{s}$ = 13 TeV. The analysis uses a data sample with an integrated luminosity of 36.1 fb$^{-1}$ collected by the ATLAS detector at the LHC in 2015 and 2016. Candidate $Z\gamma$ events with invisible decays of the $Z$ boson are selected by requiring significant transverse momentum ($p_{T}$) of the dineutrino system in conjunction with a single isolated photon with large transverse energy ($E_{T}$). The rate of $Z\gamma$ production is measured as a function of photon $E_{T}$, dineutrino system $p_{T}$ and jet multiplicity. Evidence of anomalous triple gauge-boson couplings is sought in $Z\gamma$ production with photon $E_{T}$ greater than 600 GeV. No excess is observed relative to the Standard Model expectation, and upper limits are set on the strength of $ZZ\gamma$ and $Z\gamma\gamma$ couplings.

8 data tables

Measured integrated cross sections for the $Z\gamma$ process for neutrino final states at $\sqrt{s} = 13$ TeV in the extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the inclusive $N_{jets} \geq 0$ extended fiducial region defined in the paper.

Measured differential cross sections for the $pp \rightarrow \nu\bar{\nu}\gamma$ process at $\sqrt{s} = 13$ TeV as a function of photon $E_{T}$ in the exclusive $N_{jets} = 0$ extended fiducial region defined in the paper.

More…