Date

Analyzing Power Measurements of Coulomb Nuclear Interference With the Polarized Proton and Anti-proton Beams at 185 GeV/c

The E581/704 collaboration Akchurin, N. ; Carey, David C. ; Coleman, R. ; et al.
Phys.Lett.B 229 (1989) 299-303, 1989.
Inspire Record 280476 DOI 10.17182/hepdata.29782

The analyzing power A N of proton-proton, proton-hydrocarbon, and antiproton-hydrocarbon, scattering in the Coulomb-nuclear interference region has been measured using thhe 185 GeV/ c Fermilab polarized-proton and -antiproton beams. The results are found to be consistent with theoretical predictions within statistical uncertainties.

3 data tables match query

No description provided.

Data from hydrocarbon target.

Data from hydrocarbon target.


Measurement of the Real Part of the Forward Scattering Amplitude in K+- p Elastic Scattering at 10.4-GeV/c and 14-GeV/c

Carnegie, R.K. ; Cashmore, R.J. ; Davier, M. ; et al.
Phys.Lett.B 59 (1975) 308-312, 1975.
Inspire Record 100638 DOI 10.17182/hepdata.48091

The differential cross section for K ± p elastic scattering has been measured in the very low t region (0.003 < t < 0.2 GeV 2 ) in a wire chamber spectrometer experiment at 10.4 and 14 GeV/ c . The interference effect observed between the Coulomb and the nuclear interaction has been used to determine α, the ratio of real to imaginary part of the forward scattering amplitude. At 10.4 GeV/ c we measure α (K + p) = −0.21 ± 0.06 and α (K − p = 0.08 ± 0.04, and at 14 GeV/ c , α (K + p) = − 0.13 ± 0.03 and α (K − p) = 0.000 ± 0.04 in agreeement with the predictions of dispersion theory calculation.

1 data table match query

No description provided.


DIFFRACTION DISSOCIATION OF ANTI-PROTONS IN anti-p p COLLISIONS AT 22.4-GeV/c

The Dubna-Alma Ata-Yerevan-Helsinki-Moscow-Prague-Tbilisi collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Gramenitsky, I.M. ; et al.
Sov.J.Nucl.Phys. 37 (1983) 58, 1983.
Inspire Record 178090 DOI 10.17182/hepdata.71073

None

11 data tables match query

No description provided.

No description provided.

No description provided.

More…

$K^- p$ and $\bar{p} p$ Elastic Scattering at 10.1-{GeV}/$c$

Berglund, A. ; Buran, T. ; Carlson, P.J. ; et al.
Nucl.Phys.B 176 (1980) 346-354, 1980.
Inspire Record 133174 DOI 10.17182/hepdata.34457

The differential cross sections for K − p and p p elastic scattering have been measured over the range of four-momentum transfer squared 0.18<− t <3.3 (GeV/ c ) 2 . The K − p data decrease smoothly as a function of − t , whereas, the p p data shows a break at − t = 0.6 (GeV/ c ) 2 followed by a fast drop to − t ≅ 1.6 (GeV/ c ) 2 where the differential cross section levels off and stays constant out to − t = 3 (GeV/ c ) 2 .

2 data tables match query

No description provided.

No description provided.


Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 < m_{3\pi} < 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 < t' < 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables match query

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).


Measurement of a Mixed Spin Spin Correlation Parameter for $n p$ Elastic Scattering

Garnett, R. ; Rawool, M. ; Carlson, V. ; et al.
Phys.Rev.D 40 (1989) 1708, 1989.
Inspire Record 25430 DOI 10.17182/hepdata.23054

The mixed spin-spin correlation parameter Cσσ≈0.5CSS−0.8CSL for np elastic scattering was measured for incident-neutron-beam kinetic energies of 484, 634, and 788 MeV over the center-of-mass angular range 75°-180°. These Cσσ data are important for determining the I=0 nucleon-nucleon amplitudes and provide strong constraints on the phase-shift solutions. It was found that the P11, S13, and D13 isospin-0 partial waves are most strongly affected.

3 data tables match query

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.475 * CSS + 0.088 CNN + 0.1390 CLL - 0.744 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.506 * CSS + 0.064 CNN + 0.163 CLL - 0.809 CSL.

Mixed spin parameter POL.POL(NAME=CXX) is given by 0.528 * CSS + 0.050 CNN + 0.178 CLL - 0.824 CSL.


Measurement of b, the Nuclear Slope Parameter of the p anti-p Elastic Scattering Distribution at s**(1/2) = 1800-GeV

The E710 collaboration Amos, N.A. ; Baker, W.F. ; Bertani, M. ; et al.
Phys.Rev.Lett. 61 (1988) 525, 1988.
Inspire Record 261411 DOI 10.17182/hepdata.20066

We have studied proton-antiproton elastic scattering at s=1800 GeV at the Fermilab Collider, in the range 0.02<|t|<0.13 (GeV/c)2. Fitting the distribution by exp(−B|t|), we obtain a value of B of 17.2±1.3 (GeV/c)−2.

2 data tables match query

No description provided.

Error contains estimate of systematic effects.


The Spin Correlation Parameter and Analyzing Power in $n p$ Elastic Scattering at Intermediate-energies

Abegg, R. ; Ahmad, M. ; Bandyopadhyay, D. ; et al.
Phys.Rev.C 40 (1989) 2684-2696, 1989.
Inspire Record 281880 DOI 10.17182/hepdata.26220

In order to improve existing I=0 phase shift solutions, the spin correlation parameter ANN and the analyzing powers A0N and AN0 have been measured in n-p elastic scattering over an angular range of 50°–150° (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of ±0.03. The data have a profound effect on various phase parameters, particularly the P11, D23, and ε1 phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data (A0N and AN0) measured at 477 MeV in a different experiment over a limited angular range [60°–80° (c.m.)] are reported here.

10 data tables match query

The beam analysing power at incident kinetic energy 220 MeV. Additional systematic uncertainty of +- 0.015 and a scalar error of 3.5 PCT.

The beam analysing power at incident kinetic energy 325 MeV. Additional systematic uncertainty of +- 0.018 and a scalar error of 3.1 PCT.

The beam analysing power at incident kinetic energy 425 MeV. Additional systematic uncertainty of +- 0.022 and a scalar error of 3.3 PCT.

More…

Measurement of Polarization in $K^+ N$ Elastic Scattering Between 0.851-{GeV}/c and 1.351-{GeV}/c

Robertson, A.W. ; Astbury, A. ; Grayer, G.H. ; et al.
Phys.Lett.B 91 (1980) 465-469, 1980.
Inspire Record 152628 DOI 10.17182/hepdata.27196

The polarizaton parameter has been measured for K + n elastic scatteringat five incident beam momenta between 0.851 GeV/ c and 1.351 GeV/ c for c.m. angles in the range −0.9 < cos θ ∗ < 0.9 . It is in good agreement with the most recent partial wave analysis of the KN system.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Quasi-elastic p n scattering in Li-6_D and Li-6_H targets from 1.1-GeV to 2.4-GeV.

de Lesquen, A. ; Allgower, C.E. ; Ball, J. ; et al.
Eur.Phys.J.C 11 (1999) 69-78, 1999.
Inspire Record 505046 DOI 10.17182/hepdata.43332

A polarized proton beam from SATURNE II, the Saclay polarized targets with$^6$Li compounds, and an unpol

17 data tables match query

The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.

The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.

The PN analysing power of polarized protons scattered on the polarized and/or unpolarized LiD and LiH targets.

More…