We report the first measurement of transverse single-spin asymmetries in $J/\psi$ production from transversely polarized $p+p$ collisions at $\sqrt{s} = 200$ GeV with data taken by the PHENIX experiment in 2006 and 2008. The measurement was performed over the rapidity ranges $1.2 < |y| < 2.2$ and $ |y| < 0.35$ for transverse momenta up to 6 GeV/$c$. $J/\psi$ production at RHIC is dominated by processes involving initial-state gluons, and transverse single-spin asymmetries of the $J/\psi$ can provide access to gluon dynamics within the nucleon. Such asymmetries may also shed light on the long-standing question in QCD of the $J/\psi$ production mechanism. Asymmetries were obtained as a function of $J/\psi$ transverse momentum and Feynman-$x$, with a value of $-0.086 \pm 0.026^{\rm stat} \pm 0.003^{\rm syst}$ in the forward region. This result suggests possible nonzero trigluon correlation functions in transversely polarized protons and, if well defined in this reaction, a nonzero gluon Sivers distribution function.
Transverse single-spin asymmetry in $J/\psi$ production as a function of $x_F$ for 2006 and 2008 data sets. Systematic uncertainties $\delta$$A^f_N$ Type B and $\delta$$A^P_N$ Type B are due to the geometric scale factor and the polarization, respectively.
Transverse single-spin asymmetry in $J/\psi$ production as a function of $x_F$ for 2006 and 2008 data sets. Systematic uncertainties $\delta$$A^f_N$ Type B and $\delta$$A^P_N$ Type B are due to the geometric scale factor and the polarization, respectively.
Transverse single-spin asymmetry in $J/\psi$ production as a function of $x_F$ for 2006 and 2008 data sets. Systematic uncertainties $\delta$$A^f_N$ Type B and $\delta$$A^P_N$ Type B are due to the geometric scale factor and the polarization, respectively.
We report on the measurement of two-pion correlation functions from pp collisions at $\sqrt{s}=900$ GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the HBT radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at RHIC and at Tevatron, is not manifest in our data.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
Two-particle correlation functions for like-sign and unlike sign pion pairs.
The $\Sigma$ beam asymmetry in the photoproduction of negative pions from quasi-free neutrons in a deuterium target was measured at Graal in the energy interval 700 - 1500 MeV and a wide angular range, using polarized and tagged photons. The results are compared with recent partial wave analyses.
The measured beam polarization asymmetry for photon energy 753 MeV.
The measured beam polarization asymmetry for photon energy 820 MeV.
The measured beam polarization asymmetry for photon energy 884 MeV.
We have measured cross sections for forward neutron production from a variety of targets using proton beams from the Fermilab Main Injector. Measurements were performed for proton beam momenta of 58 GeV/c, 84 GeV/c, and 120 GeV/c. The cross section dependence on the atomic weight (A) of the targets was found to vary as $A^(alpha)$ where $\alpha$ is $0.46\pm0.06$ for a beam momentum of 58 GeV/c and 0.54$\pm$0.05 for 120 GeV/c. The cross sections show reasonable agreement with FLUKA and DPMJET Monte Carlos. Comparisons have also been made with the LAQGSM Monte Carlo.
Total inelastic PP cross section.
Average multiplicities and production cross section for neutral particles from PP interactions at 84 GeV.
Cross sections for neutron production greater than threshold and within an angular range of 20.4 mrad.
A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 inverse pb collected by the CMS experiment at the LHC. Upper limits at the 95% confidence level (CL) are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% CL: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E_6 diquarks, in specific mass intervals. This extends previously published limits on these models.
Dijet mass spectrum. As this data is uncorrected for detector effects it is not tabulated here.
95% CL upper limits for dijet resonances for an acceptance value (A) of 0.6.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.
Using 7.3 pb-1 of ppbar collisions collected by the D0 detector at the Fermilab Tevatron, we measure the distribution of the variable \phistar, which probes the same physical effects as the Z/gamma* boson transverse momentum, but is less susceptible to the effects of experimental resolution and efficiency. A QCD prediction is found to describe the general features of the \phistar distribution, but is unable to describe its detailed shape or dependence on boson rapidity. A prediction that includes a broadening of transverse momentum for small values of the parton momentum fraction is strongly disfavored.
The measured PHI* distributions for the dielectron events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
The measured PHI* distributions for the dimuon events corrected back to the particle level. The distributions are normalised to unity inidividually for each abs(yrap) bin and channel.
The first measurement of the cross section for top-quark pair production in pp collisions at the LHC at center-of-mass energy sqrt(s)= 7 TeV has been performed using 3.1 {\pm} 0.3 inverse pb of data recorded by the CMS detector. This result utilizes the final state with two isolated, highly energetic charged leptons, large missing transverse energy, and two or more jets. Backgrounds from Drell-Yan and non-W/Z boson production are estimated from data. Eleven events are observed in the data with 2.1 {\pm} 1.0 events expected from background. The measured cross section is 194 {\pm} 72 (stat.) {\pm} 24 (syst.) {\pm} 21 (lumi.) pb, consistent with next-to-leading order predictions.
Total cross section. The second systematic error represents the uncertainty on the luminosity.
This article describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B^0\to D^{*-}\ell^+\nu_\ell$ using 711 fb$^{-1}$ of Belle data collected near the $\Upsilon(4S)$ resonance. We simultaneously measure the product of the form factor normalization $\mathcal{F}(1)$ and the matrix element $|V_{cb}|$ as well as the three parameters $\rho^2$, $R_1(1)$ and $R_2(1)$, which determine the form factors of this decay in the framework of the Heavy Quark Effective Theory. The results, based on about 120,000 reconstructed $B^0\to D^{*-}\ell^+\nu_\ell$ decays, are $\rho^2=1.214\pm 0.034\pm 0.009$, $R_1(1)=1.401\pm 0.034\pm 0.018$, $R_2(1)=0.864\pm 0.024\pm 0.008$ and $\mathcal{F}(1)|V_{cb}|=(34.6\pm 0.2\pm 1.0)\times 10^{-3}$. The branching fraction of $B^0\to D^{*-}\ell^+\nu_\ell$ is measured at the same time/ we obtain a value of $\mathcal{B}(B^0 \to D^{*-}\ell^+ \nu_\ell) = (4.58 \pm 0.03 \pm 0.26) %$. The errors correspond to the statistical and systematic uncertainties. These results give the most precise determination of the form factor parameters and $\mathcal{F}(1)|V_{cb}|$ to date. In addition, a direct, model-independent determination of the form factor shapes has been carried out.
Continuum-subtracted on-resonance data as a function of the $w$ kinematic variable.
Continuum-subtracted on-resonance data as a function of the $\cos\theta_\ell$ variable.
Continuum-subtracted on-resonance data as a function of the $\cos\theta_\nu$ variable.
Pair correlations between large transverse momentum neutral pion triggers (p_T=4--7 GeV/c) and charged hadron partners (p_T=3--7 GeV/c) in central (0--20%) and midcentral (20--60%) Au+Au collisions are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot dense matter. An out-of-plane trigger particle produces only 26+/-20% of the away-side pairs that are observed opposite of an in-plane trigger particle. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism in and the space-time evolution of heavy-ion collisions.
Delta phi / Correlation Function 3-4 GeV/c partners
Delta phi / Correlation Function 3-4 GeV/c partners
$p^{a}_{T} = 3-4$ GeV/$c$