Showing 10 of 6718 results
A search for $W^\prime$ bosons in events with one lepton (electron or muon) and missing transverse momentum is presented. The search uses 3.2 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS experiment at the LHC in 2015. The transverse mass distribution is examined and no significant excess of events above the level expected from Standard Model processes is observed. Upper limits on the $W^\prime$ boson cross-section times branching ratio to leptons are set as a function of the $W^\prime$ mass. Assuming a $W^\prime$ boson as predicted by the Sequential Standard Model, $W^\prime$ masses below 4.07 TeV are excluded at the 95% confidence level. This extends the limit set using LHC data at $\sqrt{s}=8$ TeV by around 800 GeV.
Observed and predicted electron channel transverse mass (MT) distribution in the search region. The bin width is constant in log(MT).
Observed and predicted muon channel transverse mass (MT) distribution in the search region. The bin width is constant in log(MT).
W' Product of acceptance and efficiency for the electron and muon selections as a function of the SSM W' pole mass.
Median expected and observed 95% CL upper limits on the cross-section times branching ratio (sigma*B) for W'_SSM production for the exclusive muon and electron channels, and for both channels combined.
The production of $W^{\pm}Z$ events in proton--proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb$^{-1}$. The $W^{\pm}Z$ candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu \ell \ell}^{\textrm{fid.}} = 63.2 \pm 3.2$ (stat.) $\pm 2.6$ (sys.) $\pm 1.5$ (lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is $53.4^{+3.6}_{-2.8}$ fb. The extrapolation of the measurement from the fiducial to the total phase space yields $\sigma_{W^{\pm}Z}^{\textrm{tot.}} = 50.6 \pm 2.6$ (stat.) $\pm 2.0$ (sys.) $\pm 0.9$ (th.) $\pm 1.2$ (lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of $48.2^{+1.1}_{-1.0}$ pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent $W^+Z$ and $W^-Z$ cross sections and their ratio.
The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.
The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.
The measured fiducial cross section in the four channels and their combination. The first systematic uncertainty is the combined systematic uncertainty excluding luminosity uncertainty, the second is the luminosity uncertainty.
Ratio of fiducial cross sections measured for $W^{\pm} Z$ production at $\sqrt{s}=13$ TeV and $\sqrt{s}=8$ TeV. The first systematic uncertainty is the combined systematic uncertainty excluding the luminosity uncertainty, the second is the luminosity uncertainty.
Ratio of fiducial cross sections measured for $W^{+} Z$ and $W^{-} Z$ production.
Cross section extrapolated to total phase space and all W and Z boson decays. The first systematic uncertainty is the combined systematic uncertainty excluding theory and luminosity uncertainties, the second is the theory uncertainty and the third is the luminosity uncertainty.
The measured fiducial cross sections are corrected to the dressed level. The ratio of $C_{WZ}^{\textrm{dressed}}/C_{WZ}^{\textrm{Born}}$ factors presented in this table can be used to correct fiducial integrated cross sections from dressed to Born level.
Measured fiducial cross section as a function of the exclusive jet multiplicity, where jets are particle level jets with anti-kt R=0.4. The first systematic uncertainty is the combined systematic uncertainty excluding theory and luminosity uncertainties, the second is the luminosity uncertainty. The last bin is a cross section for all events above the lower end of the bin.
The total cross section is measured at dressed level and can also be corrected to Born level use this acceptance correction factor.
Correlation matrix for the total uncertainties, including all sources of systematic and statistical uncertainties, for the differential cross section as a function of the exclusive jet multiplicity.
All correlated systematic relative uncertainties in percent on measured differential cross section as a function of the exclusive jet multiplicity.
The results of a search for the stop, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, jets, and missing transverse momentum are reported. The search uses the 2015 LHC $pp$ collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded by the ATLAS detector and corresponding to an integrated luminosity of 3.2 fb${}^{-1}$. The analysis targets two types of signal models: gluino-mediated pair production of stops with a nearly mass-degenerate stop and neutralino; and direct pair production of stops, decaying to the top quark and the lightest neutralino. The experimental signature in both signal scenarios is similar to that of a top quark pair produced in association with large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits on gluino and stop masses are set at 95% confidence level. The results extend the LHC Run-1 exclusion limit on the gluino mass up to 1460 GeV in the gluino-mediated scenario in the high gluino and low stop mass region, and add an excluded stop mass region from 745 to 780 GeV for the direct stop model with a massless lightest neutralino. The results are also reinterpreted to set exclusion limits in a model of vector-like top quarks.
Comparison of data with estimated backgrounds in the $am_\text{T2}$ distribution with the STCR1 event selection except for the requirement on $am_\text{T2}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $b$-tagged jet multiplicity with the STCR1 event selection except for the requirement on the $b$-tagged jet multiplicity. Furthermore, the $\Delta R(b_1,b_2)$ requirement is dropped. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\Delta R(b_1,b_2)$ distribution with the STCR1 event selection except for the requirement on $\Delta R(b_1,b_2)$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\tilde{E}_\text{T}^\text{miss}$ distribution with the TZCR1 event selection except for the requirement on $\tilde{E}_\text{T}^\text{miss}$. The variables $\tilde{E}_\text{T}^\text{miss}$ and $\tilde{m}_\text{T}$ are constructed in the same way as $E_\text{T}^\text{miss}$ and $m_\text{T}$ but treating the leading photon transverse momentum as invisible. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of data with estimated backgrounds in the $\tilde{m}_\text{T}$ distribution with the TZCR1 event selection except for the requirement on $\tilde{m}_\text{T}$. The variables $\tilde{E}_\text{T}^\text{miss}$ and $\tilde{m}_\text{T}$ are constructed in the same way as $E_\text{T}^\text{miss}$ and $m_\text{T}$ but treating the leading photon transverse momentum as invisible. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Comparison of the observed data ($n_\text{obs}$) with the predicted background ($n_\text{exp}$) in the validation and signal regions. The background predictions are obtained using the background-only fit configuration. The bottom panel shows the significance of the difference between data and predicted background, where the significance is based on the total uncertainty ($\sigma_\text{tot}$).
Jet multiplicity distributions for events where exactly two signal leptons are selected. No correction factors are included in the background normalizations. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
Jet multiplicity distributions for events where exactly one lepton plus one $\tau$ candidate are selected. No correction factors are included in the background normalizations. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin includes overflow.
The $E_\text{T}^\text{miss}$ distribution in SR1. In the plot, the full event selection in the corresponding signal region is applied, except for the requirement on $E_\text{T}^\text{miss}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin contains the overflow. Benchmark signal models are overlaid for comparison. The benchmark models are specified by the gluino and stop masses, given in TeV in the table.
The $m_\text{T}$ distribution in SR1. In the plot, the full event selection in the corresponding signal region is applied, except for the requirement on $m_\text{T}$. The predicted backgrounds are scaled with normalization factors. The uncertainty band includes statistical and all experimental systematic uncertainties. The last bin contains the overflow. Benchmark signal models are overlaid for comparison. The benchmark models are specified by the gluino and stop masses, given in TeV in the table.
Expected (black dashed) 95% excluded regions in the plane of $m_{\tilde{g}}$ versus $m_{\tilde{t}_1}$ for gluino-mediated stop production.
Observed (red solid) 95% excluded regions in the plane of $m_{\tilde{g}}$ versus $m_{\tilde{t}_1}$ for gluino-mediated stop production.
Expected (black dashed) 95% excluded regions in the plane of $m_{\tilde{t}_1}$ versus $m_{\tilde{\chi}_1^0}$ for direct stop production.
Observed (red solid) 95% excluded regions in the plane of $m_{\tilde{t}_1}$ versus $m_{\tilde{\chi}_1^0}$ for direct stop production.
The expected upper limits on $T$ quark pair production times the squared branching ratio for $T \rightarrow tZ$ as a function of the $T$ quark mass.
The observed upper limits on $T$ quark pair production times the squared branching ratio for $T \rightarrow tZ$ as a function of the $T$ quark mass.
The expected limits on $T$ quarks as a function of the branching ratios $B\left(T \rightarrow bW\right)$ and $B\left(T \rightarrow tH\right)$ for a $T$ quark with a mass of 800 GeV. The $T$ is assumed to decay in three possible ways: $T \to tZ$, $T \to tH$, and $T \to bW$.
The observed limits on $T$ quarks as a function of the branching ratios $B\left(T \rightarrow bW\right)$ and $B\left(T \rightarrow tH\right)$ for a $T$ quark with a mass of 800 GeV. The $T$ is assumed to decay in three possible ways: $T \to tZ$, $T \to tH$, and $T \to bW$.
The $m_\text{T}$ distribution in the WVR2-tail validation region which has the same preselection and jet $p_\text{T}$ requirements as SR2.
The $am_\text{T2}$ distribution in the WVR2-tail validation region which has the same preselection and jet $p_\text{T}$ requirements as SR2.
Large-radius jet mass ($R=1.2$), decomposed into the number of small-radius jet constituents. The lower panel shows the ratio of the total data to the total prediction (summed over all jet multiplicities). Events are required to have one lepton, four jets with $p_\text{T}>80,50,40,40$ GeV, at least one $b$-tagged jet, $E_\text{T}^\text{miss}>200$ GeV, and $m_\text{T}>30$ GeV.
Distribution of $m_\text{T2}^\tau$ in data for a selection enriched in $t\bar{t}$ events with one hadronically decaying $\tau$. Events that have no hadronic $\tau$ candidate (that passes the Loose identification criteria, as well as other requirements) are not shown in the plot.
Upper limits on the model cross-section in units of pb for the gluino-mediated stop models.
Upper limits on the model cross-section in units of pb for the models with direct stop pair production.
Illustration of the best expected signal region per signal grid point for the gluino-mediated stop models. This mapping is used for the final combined exclusion limits.
Illustration of the best expected signal region per signal grid point for models with direct stop pair production. This mapping is used for the final combined exclusion limits.
Expected $CL_s$ values for the gluino-mediated stop models.
Observed $CL_s$ values for the gluino-mediated stop models.
Expected $CL_s$ values for the direct stop pair production models.
Observed $CL_s$ values for the direct stop pair production models.
Expected limit using SR1 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR1 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR1 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR1 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR1 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR1 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Expected limit using SR2 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR2 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR2 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR2 for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR2 for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR2 for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production and an unpolarized stop (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Expected limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production and an unpolarized stop (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1=\tilde{t}_L$ (and bino LSP).
Observed limit using SR1+SR2 (best expected) for models with direct stop pair production with $\tilde{t}_1\sim\tilde{t}_R$ (and bino LSP).
Acceptance for SR1 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR1 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR2 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR2 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR3 in the gluino-mediated stop models. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Acceptance for SR3 in the direct stop pair production. The acceptance is defined as the fraction of signal events that pass the analysis selection performed on generator-level objects, therefore emulating an ideal detector with perfect particle identification and no measurement resolution effects.
Efficiency for SR1 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR1 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR2 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR2 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR3 in the gluino-mediated stop models. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Efficiency for SR3 in the direct stop pair production. The efficiency is the ratio between the expected signal rate calculated with simulated data passing all the reconstruction level cuts applied to reconstructed objects, and the signal rate for an ideal detector (with perfect particle identification and no measurement resolution effects).
Production of $d$, $t$, and $^3$He nuclei in central Pb+Pb interactions was studied at five collision energies ($\sqrt{s_{NN}}=$ 6.3, 7.6, 8.8, 12.3, and 17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum spectra, rapidity distributions, and particle ratios were measured. Yields are compared to predictions of statistical models. Phase-space distributions of light nuclei are discussed and compared to those of protons in the context of a coalescence approach. The coalescence parameters $B_2$ and $B_3$, as well as coalescence radii for $d$ and $^3$He were determined as a function of transverse mass at all energies.
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of helium-3 in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of deuterons in rapidity interval
Numerical data for the transverse momentum spectra of tritons in rapidity interval
Numerical data for the transverse momentum spectra of tritons in rapidity interval
Numerical data for the transverse momentum spectra of tritons in rapidity interval
Numerical data for the transverse momentum spectra of tritons in rapidity interval
Numerical data for the transverse momentum spectra of tritons in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of Helium-3 in rapidity interval
Numerical data for the transverse mass spectra of tritium in rapidity interval
Numerical data for the transverse mass spectra of tritium in rapidity interval
Numerical data for the transverse mass spectra of tritium in rapidity interval
Numerical data for the transverse mass spectra of tritium in rapidity interval
Numerical data for the transverse mass spectra of tritium in rapidity interval
Numerical data for the transverse mass spectra of deuterim in rapidity interval
Numerical data for the transverse mass spectra of deuterim in rapidity interval
Numerical data for the transverse mass spectra of deuterim in rapidity interval
Numerical data for the transverse mass spectra of deuterim in rapidity interval
Numerical data for the transverse mass spectra of deuterim in rapidity interval
Numerical data for the coalescence parameter B2 of deuterons in rapidity interval
Numerical data for the coalescence parameter B2 of deuterons in rapidity interval
Numerical data for the coalescence parameter B2 of deuterons in rapidity interval
Numerical data for the coalescence parameter B2 of deuterons in rapidity interval
Numerical data for the coalescence parameter B2 of deuterons in rapidity interval
Numerical data for the coalescence parameter B3 of helium-3 in rapidity interval
Numerical data for the coalescence parameter B3 of helium-3 in rapidity interval
Numerical data for the coalescence parameter B3 of helium-3 in rapidity interval
Numerical data for the coalescence parameter B3 of helium-3 in rapidity interval
Numerical data for the coalescence parameter B3 of helium-3 in rapidity interval
A search for heavy long-lived charged $R$-hadrons is reported using a data sample corresponding to 3.2$^{-1}$ of proton--proton collisions at $\sqrt{s} = 13$ TeV collected by the ATLAS experiment at the Large Hadron Collider at CERN. The search is based on observables related to large ionisation losses and slow propagation velocities, which are signatures of heavy charged particles travelling significantly slower than the speed of light. No significant deviations from the expected background are observed. Upper limits at 95% confidence level are provided on the production cross section of long-lived $R$-hadrons in the mass range from 600 GeV to 2000 GeV and gluino, bottom and top squark masses are excluded up to 1580 GeV, 805 GeV and 890 GeV, respectively.
Distributions of beta for data and simulation after a Zmumu selection. The values given for the mean and width are taken from Gaussian functions matched to data and simulation.
Data (black dots) and background estimates (red solid line) for m_beta for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.
Data (black dots) and background estimates (red solid line) for m_betagamma for the gluino R-hadron search (1000 GeV). The green shaded band illustrates the statistical uncertainty of the background estimate. The blue dashed lines illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical lines at 500 GeV show the mass selection and the last bin includes all entries/masses above.
Data (bold boxes) and background estimates (colour fill) for m_beta vs. m_betagamma for the gluino R-hadron search (1000 GeV). The blue thin-line boxes illustrate the expected signal (on top of background) for the given R-hadron mass hypothesis. The black dashed vertical/horizontal lines at 500 GeV show the mass selection (signal region in the top-right). Two events pass this selection.
Expected (dashed black line) and observed (solid red line) 95% CL upper limits on the cross section as a function of mass for the production of long-lived gluino R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. The observed 8 TeV Run-1 limit and theory prediction [arXiv:1411.6795] are shown in dash-dotted and dotted lines, respectively.
Expected (dashed black line) and observed (solid red line) 95% CL upper limits on the cross section as a function of mass for the production of bottom-squark R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. The observed 8 TeV Run-1 limit and theory prediction [arXiv:1411.6795] are shown in dash-dotted and dotted lines, respectively.
Expected (dashed black line) and observed (solid red line) 95% CL upper limits on the cross section as a function of mass for the production of top-squark R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. The observed 8 TeV Run-1 limit and theory prediction [arXiv:1411.6795] are shown in dash-dotted and dotted lines, respectively.
Final selection requirements as a function of the simulated R-hadron mass.
Summary of all studied systematic uncertainties. Ranges indicate a dependency on the R-hadron mass hypothesis (from low to high masses).
Expected signal yield (Nsig) and efficiency (eff.), estimated background (Nbkg) and observed number of events in data (Nobs) for the full mass range after the final selection using 3.2/fb of data. The stated uncertainties include both the statistical and systematic contribution.
Distribution of the truth-level beta for gluino R-hadrons in exemplary signal MC samples and muons in a Zmumu MC sample. All distributions have been normalised to one. The last bin contains the overflow of the histograms. The distributions illustrate the good discriminating power of the variables.
Distribution of the truth-level betagamma for gluino R-hadrons in exemplary signal MC samples and muons in a Zmumu MC sample. All distributions have been normalised to one. The last bin contains the overflow of the histograms. The distributions illustrate the good discriminating power of the variables.
Expected (dashed black line) and observed (solid red line) 95% confidence level upper limits on the cross section as a function of mass for the production of long-lived gluino R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. For meta-stable gluinos with a lifetime of 50 ns. (mass exclusion: about 1660 GeV expected, 1520 GeV observed).
Expected (dashed black line) and observed (solid red line) 95% confidence level upper limits on the cross section as a function of mass for the production of long-lived gluino R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. For meta-stable gluinos with a lifetime of 30 ns. (mass exclusion: about 1660 GeV expected, 1520 GeV observed).
Expected (dashed black line) and observed (solid red line) 95% confidence level upper limits on the cross section as a function of mass for the production of long-lived gluino R-hadrons. The theory prediction along with its +-1sigma uncertainty is show as a black line and a blue band, respectively. For meta-stable gluinos with a lifetime of 10 ns. (mass exclusion: about 1660 GeV expected, 1520 GeV observed).
Object-quality selection cut-flow with observed data and exemplary expected events (scaled to 3.2/fb for MC) in the gluino R-hadron search.
Object-quality selection cut-flow with observed data and exemplary expected events (scaled to 3.2/fb for MC) in the squark R-hadron search.
Expected signal yield (Nsig) and efficiency (eff.), estimated background (Nbkg) and observed number of events in data (Nobs) for the full mass range in the meta-stable gluino R-hadron search using 3.2/fb of data. The stated uncertainties include both the statistical and systematic contribution.
The transverse momentum spectra of weak vector bosons are measured in the CMS experiment at the LHC. The measurement uses a sample of proton-proton collisions at sqrt(s) = 8 TeV, collected during a special low-luminosity running that corresponds to an integrated luminosity of 18.4 +/- 0.5 inverse picobarns. The production of W bosons is studied in both electron and muon decay modes, while the production of Z bosons is studied using only the dimuon decay channel. The ratios of W- to W+ and Z to W differential cross sections are also measured. The measured differential cross sections and ratios are compared with theoretical predictions up to next-to-next leading order in QCD.
Normalized fiducial differential cross sections of W+ boson and W- boson decaying to electron plus neutrino and positron plus neutrino respectively at the pre-FSR level.
Normalized fiducial differential cross sections of W+ boson and W- boson decaying to muon and neutrino at pre-FSR level.
Normalized fiducial differential cross sections of Z0 boson decaying to dimuon at pre-FSR level.
Ratio of normalized fiducial differential cross sections of W- boson to W+ boson decaying to muons at pre-FSR level.
Ratio of normalized fiducial differential cross section of Z0 boson to W+ boson and W- boson at pre-FSR level of muon decay channel.
Ratio of the normalized fiducial differential cross section of Z0 boson production at center-of-energy 8 TeV to Z0 boson production at center-of-energy 7 TeV decaying to dimuon for boson PT < 20 GeV.
Ratio of the normalized fiducial differential cross section of Z0 boson production at center-of-energy 8 TeV to Z0 boson production at center-of-energy 7 TeV decaying to dimuon for boson PT > 20 GeV.
Normalized fiducial differential cross sections of W+ boson and W- boson decaying to muon and neutrino at post-FSR level.
Normalized fiducial differential cross sections of Z0 boson decaying to dimuon at post-FSR level.
Measurements of two- and multi-particle angular correlations in pp collisions at sqrt(s) = 5, 7, and 13 TeV are presented as a function of charged-particle multiplicity. The data, corresponding to integrated luminosities of 1.0 inverse picobarn (5 TeV), 6.2 inverse picobarns (7 TeV), and 0.7 inverse picobarns (13 TeV), were collected using the CMS detector at the LHC. The second-order (v[2]) and third-order (v[3]) azimuthal anisotropy harmonics of unidentified charged particles, as well as v[2] of K0 short and Lambda/anti-Lambda particles, are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For high-multiplicity pp events, a mass ordering is observed for the v[2] values of charged hadrons (mostly pions), K0 short, and Lambda/anti-Lambda, with lighter particle species exhibiting a stronger azimuthal anisotropy signal below pt of about 2 GeV/c. For 13 TeV data, the v[2] signals are also extracted from four- and six-particle correlations for the first time in pp collisions, with comparable magnitude to those from two-particle correlations. These observations are similar to those seen in pPb and PbPb collisions, and support the interpretation of a collective origin for the observed long-range correlations in high-multiplicity pp collisions.
The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The second-order Fourier coefficients, $V_{2\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles, after correcting for back-to-back jet correlations, estimated from the 10 $\leq$ $N_{offline}^{trk}$ < 20 range.
The second-order Fourier coefficients, $V_{3\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The second-order Fourier coefficients, $V_{3\Delta}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles, after correcting for back-to-back jet correlations, estimated from the 10 $\leq$ $N_{offline}^{trk}$ < 20 range.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The triangular flow after correcting for back-to-back jet correlations, $v_{3}^{sub}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The triangular flow after correcting for back-to-back jet correlations, $v_{3}^{sub}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The triangular flow after correcting for back-to-back jet correlations, $v_{3}^{sub}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for $K^{0}_{S}$.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for $\Lambda/\bar{\Lambda}$.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for $K^{0}_{S}$.
The elliptic flow, $v_{2}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for $\Lambda/\bar{\Lambda}$.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for charged particles.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for $K^{0}_{S}$.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $p_{T}$ for $\Lambda/\bar{\Lambda}$.
The elliptic flow per constituent quark after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)/n_{q}$, as a function of transverse kinetic energy per constituent quark $KE_{T}/n_{q}$ for $K^{0}_{S}$.
The elliptic flow per constituent quark after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of transverse kinetic energy per constituent quark $KE_{T}/n_{q}$ for $\Lambda/\bar{\Lambda}$.
The four-particle cumulant, $c_{2}(4)$, as a function of $N_{offline}^{trk}$ for charged particles.
The four-particle cumulant, $c_{2}(4)$, as a function of $N_{offline}^{trk}$ for charged particles.
The four-particle cumulant, $c_{2}(4)$, as a function of $N_{offline}^{trk}$ for charged particles.
The six-particle cumulant, $c_{2}(6)$, as a function of $N_{offline}^{trk}$ for charged particles.
The elliptic flow after correcting for back-to-back jet correlations, $v_{2}^{sub}(2, |\Delta\eta| > 2)$, as a function of $N_{offline}^{trk}$ for charged particles.
The elliptic flow, $v_{2}(4)$, as a function of $N_{offline}^{trk}$ for charged particles.
The elliptic flow, $v_{2}(6)$, as a function of $N_{offline}^{trk}$ for charged particles.
The process $e^+e^-\to\omega\eta\pi^0$ is studied in the energy range $1.45-2.00$ GeV using data with an integrated luminosity of 33 pb$^{-1}$ accumulated by the SND detector at the $e^+e^-$ collider VEPP-2000. The $e^+e^-\to\omega\eta\pi^0$ cross section is measured for the first time. The cross section has a threshold near 1.75 GeV. Its value is about 2 nb in the energy range $1.8-2.0$ GeV. The dominant intermediate state for the process $e^+e^- \to \omega\eta\pi^0$ is found to be $\omega a_0(980)$.
The energy interval, integrated luminosity ($L$), number of selected events ($N$), estimated number of background events ($N_{bkg}$), detection efficiency for $e^+e^-\to\omega\eta\pi^0\to 7\gamma$ events ($\epsilon$), radiative correction ($\delta+1$), and $e^+e^-\to\omega\eta\pi^0$ Born cross section ($\sigma$). The shown cross-section errors are statistical. The systematic error is 4.2%. The 90% confidence level upper limits are listed for the first two energy intervals.
High statistics measurements of the photon asymmetry $\mathrm{\Sigma}$ for the $\overrightarrow{\gamma}$p$\rightarrow\pi^{0}$p reaction have been made in the center of mass energy range W=1214-1450 MeV. The data were measured with the MAMI A2 real photon beam and Crystal Ball/TAPS detector systems in Mainz, Germany. The results significantly improve the existing world data and are shown to be in good agreement with previous measurements, and with the MAID, SAID, and Bonn-Gatchina predictions. We have also combined the photon asymmetry results with recent cross-section measurements from Mainz to calculate the profile functions, $\check{\mathrm{\Sigma}}$ (= $\sigma_{0}\mathrm{\Sigma}$), and perform a moment analysis. Comparison with calculations from the Bonn-Gatchina model shows that the precision of the data is good enough to further constrain the higher partial waves, and there is an indication of interference between the very small $F$-waves and the $N(1520) 3/2^{-}$ and $N(1535) 1/2^{-}$ resonances.
Photon beam asymmetry Sigma at W=1.2159988 GeV
Photon beam asymmetry Sigma at W=1.2194968 GeV
Photon beam asymmetry Sigma at W=1.2225014 GeV
Photon beam asymmetry Sigma at W=1.2254987 GeV
Photon beam asymmetry Sigma at W=1.2290003 GeV
Photon beam asymmetry Sigma at W=1.2324995 GeV
Photon beam asymmetry Sigma at W=1.2355029 GeV
Photon beam asymmetry Sigma at W=1.2389989 GeV
Photon beam asymmetry Sigma at W=1.2425001 GeV
Photon beam asymmetry Sigma at W=1.2455020 GeV
Photon beam asymmetry Sigma at W=1.2484967 GeV
Photon beam asymmetry Sigma at W=1.2514991 GeV
Photon beam asymmetry Sigma at W=1.2550029 GeV
Photon beam asymmetry Sigma at W=1.2584969 GeV
Photon beam asymmetry Sigma at W=1.2614979 GeV
Photon beam asymmetry Sigma at W=1.2644992 GeV
Photon beam asymmetry Sigma at W=1.2675008 GeV
Photon beam asymmetry Sigma at W=1.2705027 GeV
Photon beam asymmetry Sigma at W=1.2739984 GeV
Photon beam asymmetry Sigma at W=1.2774992 GeV
Photon beam asymmetry Sigma at W=1.2804996 GeV
Photon beam asymmetry Sigma at W=1.2835003 GeV
Photon beam asymmetry Sigma at W=1.2864940 GeV
Photon beam asymmetry Sigma at W=1.2895026 GeV
Photon beam asymmetry Sigma at W=1.2924970 GeV
Photon beam asymmetry Sigma at W=1.2954989 GeV
Photon beam asymmetry Sigma at W=1.2989995 GeV
Photon beam asymmetry Sigma at W=1.3024980 GeV
Photon beam asymmetry Sigma at W=1.3054984 GeV
Photon beam asymmetry Sigma at W=1.3084992 GeV
Photon beam asymmetry Sigma at W=1.3115002 GeV
Photon beam asymmetry Sigma at W=1.3145016 GeV
Photon beam asymmetry Sigma at W=1.3175032 GeV
Photon beam asymmetry Sigma at W=1.3204980 GeV
Photon beam asymmetry Sigma at W=1.3235001 GeV
Photon beam asymmetry Sigma at W=1.3265026 GeV
Photon beam asymmetry Sigma at W=1.3294983 GeV
Photon beam asymmetry Sigma at W=1.3325013 GeV
Photon beam asymmetry Sigma at W=1.3354976 GeV
Photon beam asymmetry Sigma at W=1.3385012 GeV
Photon beam asymmetry Sigma at W=1.3414981 GeV
Photon beam asymmetry Sigma at W=1.3445022 GeV
Photon beam asymmetry Sigma at W=1.3474997 GeV
Photon beam asymmetry Sigma at W=1.3504974 GeV
Photon beam asymmetry Sigma at W=1.3535024 GeV
Photon beam asymmetry Sigma at W=1.3565007 GeV
Photon beam asymmetry Sigma at W=1.3594993 GeV
Photon beam asymmetry Sigma at W=1.3624982 GeV
Photon beam asymmetry Sigma at W=1.3654974 GeV
Photon beam asymmetry Sigma at W=1.3684968 GeV
Photon beam asymmetry Sigma at W=1.3714966 GeV
Photon beam asymmetry Sigma at W=1.3744966 GeV
Photon beam asymmetry Sigma at W=1.3774969 GeV
Photon beam asymmetry Sigma at W=1.3804974 GeV
Two-particle pseudorapidity correlations are measured in $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV Pb+Pb, $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV $p$+Pb, and $\sqrt{s}$ = 13 TeV $pp$ collisions at the LHC, with total integrated luminosities of approximately 7 $\mu\mathrm{b}^{-1}$, 28 $\mathrm{nb}^{-1}$, and 65 $\mathrm{nb}^{-1}$, respectively. The correlation function $C_{\rm N}(\eta_1,\eta_2)$ is measured as a function of event multiplicity using charged particles in the pseudorapidity range $|\eta|<2.4$. The correlation function contains a significant short-range component, which is estimated and subtracted. After removal of the short-range component, the shape of the correlation function is described approximately by $1+\langle{a_1^2}\rangle \eta_1\eta_2$ in all collision systems over the full multiplicity range. The values of $\sqrt{\langle{a_1^2}\rangle}$ are consistent between the opposite-charge pairs and same-charge pairs, and for the three collision systems at similar multiplicity. The values of $\sqrt{\langle{a_1^2}\rangle}$ and the magnitude of the short-range component both follow a power-law dependence on the event multiplicity. The $\eta$ distribution of the short-range component, after symmetrizing the proton and lead directions in $p$+Pb collisions, is found to be smaller than that in $pp$ collisions with comparable multiplicity.
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for Pb+Pb, pT>0.2GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (260<=Nch<300)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (240<=Nch<260)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (220<=Nch<240)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (200<=Nch<220)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (180<=Nch<200)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (160<=Nch<180)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for p+Pb, pT>0.2GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
C_N(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
C_N(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
SRC(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
SRC(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (140<=Nch<160)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (120<=Nch<140)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (100<=Nch<120)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (80<=Nch<100)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (60<=Nch<80)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (40<=Nch<60)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (20<=Nch<40)
C_N^sub(eta_1, eta_2) for pp, pT>0.5GeV, (10<=Nch<20)
C_N^sub(eta_1, eta_2) for pp, pT>0.2GeV, (10<=Nch<20)
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, w SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, w SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for Pb+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for Pb+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 260<=Nch<300, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 240<=Nch<260, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 220<=Nch<240, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 200<=Nch<220, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 180<=Nch<200, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 160<=Nch<180, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for p+Pb, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for p+Pb, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 140<=Nch<160, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 120<=Nch<140, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 100<=Nch<120, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 80<=Nch<100, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 60<=Nch<80, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 40<=Nch<60, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 20<=Nch<40, wo SRC, all pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, opposite pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, same pairs
<a_n a_m> for pp, pT>0.5GeV, 10<=Nch<20, wo SRC, all pairs
<a_n a_m> for pp, pT>0.2GeV, 10<=Nch<20, wo SRC, all pairs
a1 from fit C_N^sub(eta-) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta-) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta+) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta+) for Pb+Pb, pT>0.2GeV
a1 from fit r_N^sub(eta) for Pb+Pb, pT>0.5GeV
a1 from fit r_N^sub(eta) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for Pb+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for Pb+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta-) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta-) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta+) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta+) for p+Pb, pT>0.2GeV
a1 from fit r_N^sub(eta) for p+Pb, pT>0.5GeV
a1 from fit r_N^sub(eta) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for p+Pb, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for p+Pb, pT>0.2GeV
a1 from fit C_N^sub(eta-) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta-) for pp, pT>0.2GeV
a1 from fit C_N^sub(eta+) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta+) for pp, pT>0.2GeV
a1 from fit r_N^sub(eta) for pp, pT>0.5GeV
a1 from fit r_N^sub(eta) for pp, pT>0.2GeV
a1 from fit C_N^sub(eta1, eta2) for pp, pT>0.5GeV
a1 from fit C_N^sub(eta1, eta2) for pp, pT>0.2GeV
SRC for Pb+Pb, pT>0.5GeV, all pairs
SRC for Pb+Pb, pT>0.2GeV, all pairs
SRC for Pb+Pb, pT>0.5GeV, opposite pairs
SRC for Pb+Pb, pT>0.2GeV, opposite pairs
SRC for Pb+Pb, pT>0.5GeV, same pairs
SRC for Pb+Pb, pT>0.2GeV, same pairs
SRC for p+Pb, pT>0.5GeV, all pairs
SRC for p+Pb, pT>0.2GeV, all pairs
SRC for p+Pb, pT>0.5GeV, opposite pairs
SRC for p+Pb, pT>0.2GeV, opposite pairs
SRC for p+Pb, pT>0.5GeV, same pairs
SRC for p+Pb, pT>0.2GeV, same pairs
SRC for pp, pT>0.5GeV, all pairs
SRC for pp, pT>0.2GeV, all pairs
SRC for pp, pT>0.5GeV, opposite pairs
SRC for pp, pT>0.2GeV, opposite pairs
SRC for pp, pT>0.5GeV, same pairs
SRC for pp, pT>0.2GeV, same pairs
SRC for Pb+Pb, pT>0.5GeV
SRC for Pb+Pb, pT>0.2GeV
SRC for p+Pb, pT>0.5GeV
SRC for p+Pb, pT>0.2GeV
SRC for pp, pT>0.5GeV
SRC for pp, pT>0.2GeV
a1 for Pb+Pb, pT>0.5GeV
a1 for Pb+Pb, pT>0.2GeV
a1 for p+Pb, pT>0.5GeV
a1 for p+Pb, pT>0.2GeV
a1 for pp, pT>0.5GeV
a1 for pp, pT>0.2GeV
f(eta+) for p+Pb
f(eta+) for symmetrized p+Pb
f(eta+) for pp
f(eta+) for Pb+Pb
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.