Data are presented on the reactions K ± p → π 0 X, K ± p → η X, pp → π 0 X and p p → π 0 X in the kinematic region with s ⋍ 200 GeV 2 , x ≳ 0.7 and − t ≲ 1 GeV 2 . The data agree well with the predictions of triple-Regge theory and the K ∗ and nucleon Regge trajectories extracted from the data agree with the linear trajectories extrapolated from the particle poles.
No description provided.
No description provided.
No description provided.
By combining results from the MARK-J at PETRA on Bhabha scattering, μ + μ - and τ + τ - production with recent world data from neutrino-electron scattering experiments, we determine unique values for the leptonic weak neutral current coupling constants g V and g A in the framework of electroweak models containing a single Z 0 . In contrast to previous analyses, we only use data from purely leptonic interactions, and therefore avoid the inherent uncertainties resulting from the use of hadronic targets. From the MARK-J data alone in the context of the standard SU(2) ⊗ U (1) model of Glashow, Weinberg and Salam, we find sin 2 θ W =0.24±0.11.
No description provided.
No description provided.
No description provided.
The production of J/ψ by π ± , K ± , p and p¯ incident on tungsten at 39.5GeV/ c beam momentum has been studied. Production of ψ' (3700) by π ± was also observed. The J/ψ relative particle/a ntiparticle cross-sections for x F 0 are σ(σ + ) σ(σ − =( are σ(σ ± )/σ(σ − )=(1.01±0.06), σ(K + )/σ(K) − )=(0.29±0.07) and σ(p) /σ(p¯)= (0.1+-0.03). The small p/p¯ and K + /K − cross-section ratios indicate the importance of valence quarks in the production process.
No description provided.
No description provided.
The total cross section fore+e− annihilation into hadrons for center of mass energies from 9.4 to 9.5 GeV has been measured with the nonmagnetic DESY-Heidelberg detector at DORIS. A value ofR=σhad/σµµ=3.8±0.7 for the continuum region around the Υ (9.46) resonance has been determined. The ratioΓeeΓhad/Γtot of electronic, hadronic and total widths has been reevaluated to be (1.00±0.23) keV for the Υ resonance and (0.37±0.16) keV for the Υ′. In addition, a search for directly produced pohotons from Υ decays of the type Υ→γ+gluon+gluon has been performed. The Υ decay into muon pairs has also been searched for.
TOTAL CROSS SECTION FOR THE CONTINUUM REGIONS AROUND THE UPSI(9460)0 AND UPSI(10020)0 RESONANCES.
The reactions π−p→K0Λ,K0Σ0 are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to ∼90 events/μb. The differential cross sections and hyperon polarizations are presented and compared with existing data from earlier electronic experiments. The data in the forward hemisphere are used to perform an amplitude analysis of the 0−1/2+→0−1/2+ hypercharge exchange processes.
No description provided.
No description provided.
No description provided.
The reactionsπ−p→K0∑0(1385) andπ−p→K+∑−(1385) are studied at an incident momentum of 3.95 GeV/c using data from a high statistics bubble chamber experiment corresponding to approximately 90 events/μb. The total and differential cross sections and the density matrix elements of the Σ(1385) are presented. The results are compared with those obtained for the related processesπpp→K+∑+(1385) and\(K^ -p \to \pi ^ \mp\sum ^ \pm(1385)\) in this energy range. Evidence is presented for the existence of production mechanisms with exotic exchanges in thet channel.
FROM THE CHANNEL PI- P --> LAMBDA K0 PI0 WHICH HAS A CROSS SECTION OF 72 +- 4 MUB.
FROM THE CHANNEL PI- P --> LAMBDA K+ PI- WHICH HAS A CROSS SECTION OF 79 +- 3 MUB.
FORWARD CROSS SECTION.
Differential cross sections for elastic scattering of pions and protons on helium have been measured at incident momenta ranging from 50 to 300 GeV/ c in the t -range 0.008 < | < | < 0.05 (GeV/ c ) 2 . Both recoil α-particles and forward particles were detected in this experiment. The experimental method provided an absolute normalization of the cross sections with an estimated precision of 1%. From the analysis of the data, the diffraction slope parameters and total cross sections have been obtained. The results are compared with Glauber model calculations.
No description provided.
No description provided.
No description provided.
We have observed high mass resonances with mass above 1.5 GeV in pp interactions at 405 GeV/ c . We obtain cross sections 13.2 ± 2.9, 5.1 ± 2.0, 2.5 ± 1.5 and 0.27 ± 0.18 mb for ϱ 0 , f, g 0 , and h meson production, respectively. The invariant x and p T 2 distributions for produced resonances are analysed. A relative comparison of the average 〈 p T 〉 distribution as a function of resonance masses with that for μ + μ − pair production shows remarkable similarity.
ONLY INCLUSIVE CROSS SECTIONS ARE GIVEN IN THE ORIGINAL PAPER. MULTIPLICITY VALUES ARE OBTAINED BY DIVIDING THE CORRESPONDING CROSS SECTION BY INELASTIC P P 32.0+-1.0 MB ONE ACCORDING TO PR D20, 37.
Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.
No description provided.
No description provided.
No description provided.
Hoping to find resonant structures in the momentum dependence of π − p elastic scattering we have measured the differential cross section for this reaction at c.m. angles near 90°. An intense pion beam (≈ 10 7 π /s) has been used, together with a high incident momentum resolution (d P / P ≈ 2 × 10 −4 ), to scan the region of laboratory momenta from 5.75 to 13.02 GeV/ c (c.m. energy from 3.42 to 5.03 GeV). The sensitivity attained by the experiment is such that signals would have been seen corresponding to the formation of non-strange baryon resonances having width larger than ≈ 0.1 MeV and elasticity larger than a few per cent. Within these limits no resonances were sighted.
ENERGY SCAN IN BINS OF D(PLAB)/PLAB OF 5*10**-4 AT FOUR FIXED ANGLES (COS(THETA) = -0.4 TO 0.4).