The inclusive production of protons with laboratory momentum less than 1.2 GeV/ c is studied in the reacion K + p → pX at 32 GeV/ c . A comparison with the 16 GeV/ c data shows ahat the total cross section remains practically constant while the structure function shows a clear energy dependence. The data are compatible with a tripls-Regge expansion and with factorization. About 40% of the events include a K 0 in the final state. The analysis of the K 0 pX sample indicates a sizeable contribution of beam fragmentation and abundant K 890 ∗ and Δ ++ production.
No description provided.
No description provided.
No description provided.
We present experimental results on proton-deuteron and deuteron-deuteron elastic scattering measured at the two highest ISR energies, √ s = 53 GeV and √ s = 63 GeV. The data cover the single- and multiple-scattering regions over a wide interval of four-momentum transfer t . In both reactions we find clear evidence for a substantial t -dependent contribution of inelastic intermediate states in the multiple-scattering region, as well as in single scattering. In the analysis we use the Glauber multiple-scattering theory extended to include inelastic shadow effects. This extension of the basic theory contains as input a triple-Regge parametrization describing the high-mass inclusive spectrum. The analysis of inelastic corrections to multiple scattering on deuterons at high energies is shown to provide a sensitive test of different parametrization of inclusive production in proton-proton collisions.
AT SQRT(S) OF 53 AND 63 GEV.
The reaction π − p→ π + π − n has been measured in a high-statistics experiment on a transversely polarized proton target at 17.2 GeV, and unexpectedly large nucleon polarization effects have been observed. Combining the results of this experiment with a measurement on a hydrogen target allows a model-independent partial-wave analysis in terms of the “nucleon transversity” amplitudes. Unique or at most twofold ambiguous solutions are obtained. In particular we find a high lower limit ( ⪆30% ) of the spin non-flip unnatural exchange amplitudes at low | t |. These amplitudes, interpreted as being due to the exchange of an object with the quantum numbers of the A 1 , have been assumed to be absent in previous analyses. In checking the consequences of this finding on the old results, we test the validity of the rank-two assumotions for the density matrix. We find a small but significant deviation, which shows the need for a new phase-shift analysis including the A 1 exchange contribution.
MASS DEPENDENCE OF NORMALIZED T-CHANNEL MOMENTS SCALED TO 100 PCT POLARIZED PROTONS.
T DEPENDENCE OF NORMALIZED T-CHANNEL MOMENTS IN THE RHO REGION SCALED TO 100 PCT POLARIZED PROTONS.
Inclusive production of ifπ ± , K ± and p has been studied near charm threshold for c.m. energies between 3.6 and 5.2 GeV. Differential and scaling cross sections together with particle multiplicities have been determinated. By comparing data below and above charm threshold the charm contribution to if π ± and K ± production has been extracted. A comparison has been made between inclusice p production and inelastic electron-proton scattering. To study differences between three-gluon annihilation and two-quark production of the spectra from J/ decay and from non-resonant production at 3.6 GeV has been compared.
No description provided.
No description provided.
No description provided.
Inclusive Λ production has been studied in K − p interactions at 8.25 GeV/ c using about 69 000 events; the total cross section is found to be 3.35 ± 0.20 mb. A comparison has been made with Σ 0 and Σ(1385) inclusive production. Their influence on the inclusive Λ production is discussed. The inclusive Λ cross section and polarization is interpreted in terms of the triple-Regge model. In the target fragmentation region an effective Regge trajectory is determined which lies closer to the K than to the K ∗ . In the beam fragmentation region the cross-section data indicate an effective Regge trajectory which corresponds to the nucleon, while the polarization data require additional Regge exchanges to be present.
No description provided.
No description provided.
No description provided.
None
No description provided.
The magnetic moment of the Λ0 hyperon has been measured to be μΛ=(−0.6138±0.0047)μN.
No description provided.
The elastic proton-helium differential cross sections have been determined for 5 different incident laboratory energies from 40 to 400 GeV in the range 0.003 < l t I < 0.52 (GeV/c)2. The differential cross section drops 4 - 5 orders of magnitude to the first dip at I t I = 0.22 (GeV/c)2. A Glauber analysis is performed on the data. The inelastic intermediate states are found to be important. The shrinkage of the slope of the differential cross section is measured. The rate of shrinkage is twice as large as in the p-p case. Results on the real part of the elastic scattering amplitude at forward angle and at the dip structure ( l t l similar/equal to 0.22) are presented.
No description provided.
No description provided.
No description provided.
In this paper we report measurements of the backward K−p differential cross section at 49 momenta covering the momentum range 476-1084 MeV/c. The statistical precision achieved, typically 2.5%, is an order of magnitude better than previous measurements. The systematic errors for this reaction are about 1%. The differential cross section for the reaction K−p→Σ−π+ where the π+ emerges at 0° has also been measured at 32 momenta with comparable improvement in precision over previous experiments. A partial-wave analysis of the K¯N channels including the new K−p backward elastic data is presented.
No description provided.
No description provided.
We present results for the reactions νp→μ−π+p and νp→μ−K+p at energies above 5 GeV. The average cross section for the first reaction between 15 and 40 GeV is (0.80±0.12) × 10−38 cm2 and for events with Mπ+p<1.4 GeV is (0.55±0.08) × 10−38 cm2. The ratio of the cross section for the second reaction to that for the first is 0.017±0.010.
No description provided.
No description provided.
RAPIDITY IS MEASURED IN 'QUARK' REST FRAME DEFINED AS Y(Q)=Y(LAB)-LOG(W**2/M**2) WHERE Y(LAB)=0.5*LOG((E+PL)/(E-PL)).