This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at sqrt{s}=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb^-1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y| < 2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions.
No description provided.
No description provided.
No description provided.
The results of a search for pair production of light top squarks are presented, using 4.7 fb^-1 of sqrt(s) = 7 TeV proton-proton collisions collected with the ATLAS detector at the Large Hadron Collider. This search targets top squarks with masses similar to, or lighter than, the top quark mass. Final states containing exclusively one or two leptons (e, mu), large missing transverse momentum, light-jets and b-jets are used to reconstruct the top squark pair system. Global mass scale variables are used to separate the signal from a large ttbar background. No excess over the Standard Model expectations is found. The results are interpreted in the framework of the Minimal Supersymmetric Standard Model, assuming the top squark decays exclusively to a chargino and a b-quark. Light top squarks with masses between 123-167 GeV are excluded for neutralino masses around 55 GeV.
Expected 95 PCT exclusion limit in the M(stop), M(neutralino) plane in gaugino universality scenario.
Observed 95 PCT exclusion limit in the M(stop), M(neutralino) plane in gaugino universality scenario.
Expected 95 PCT exclusion limit in the M(chargino), M(neutralino) plane in the scenario where M(stop) = 180 GEV.
This letter reports the results of a search for top and bottom squarks from gluino pair production in 4.7 fb^-1 of pp collisions at sqrt(s) = 7 TeV using the ATLAS detector at the LHC. The search is performed in events with large missing transverse momentum and at least three jets identified as originating from a b-quark. Exclusion limits are presented for a variety of gluino-mediated models with gluino masses up to 1 TeV excluded.
Figure 2-a. Observed limit +1sigma-th.
Figure 2-a. Observed limit.
Figure 2-a. Observed limit -1sigma-th.
A measurement of the jet activity in ttbar events produced in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented, using 2.05 fb^-1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. The ttbar events are selected in the dilepton decay channel with two identified b-jets from the top quark decays. Events are vetoed if they contain an additional jet with transverse momentum above a threshold in a central rapidity interval. The fraction of events surviving the jet veto is presented as a function of this threshold for four different central rapidity interval definitions. An alternate measurement is also performed, in which events are vetoed if the scalar transverse momentum sum of the additional jets in each rapidity interval is above a threshold. In both measurements, the data are corrected for detector effects and compared to the theoretical models implemented in MC@NLO, POWHEG, ALPGEN and SHERPA. The experimental uncertainties are often smaller than the spread of theoretical predictions, allowing deviations between data and theory to be observed in some regions of phase space.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval < 0.8 having a transverse momentum greater than Q, as a function of Q.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval 0.8-1.5 having a transverse momentum greater than Q, as a function of Q.
The measured fraction of events, the gap fraction, surviving the veto cut of having no additional jets in the |rapidity| interval 1.5-2.1 having a transverse momentum greater than Q, as a function of Q.
The results of a search for pair production of the scalar partners of bottom quarks in 2.05 fb^-1 of pp collisions at sqrt{s} = 7 TeV using the ATLAS experiment are reported. Scalar bottoms are searched for in events with large missing transverse momentum and two jets in the final state, where both jets are identified as originating from a b-quark. In an R-parity conserving minimal supersymmetric scenario, assuming that the scalar bottom decays exclusively into a bottom quark and a neutralino, 95% confidence-level upper limits are obtained in the tilde{b}_1 - tilde{chi}^0_1 mass plane such that for neutralino masses below 60 GeV scalar bottom masses up to 390 GeV are excluded.
Observed 95% CL exclusion limit in the sbottom-neutralino mass plane.
Observed 95% CL exclusion limit in the sbottom-neutralino mass plane with the renormalization and factorization scales set to mu/2.
Observed 95% CL exclusion limit in the sbottom-neutralino mass plane with the renormalization and factorization scales set to 2*mu.
Inclusive jet and dijet cross sections have been measured in proton-proton collisions at a centre-of-mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider. The cross sections were measured using jets clustered with the anti-kT algorithm with parameters R=0.4 and R=0.6. These measurements are based on the 2010 data sample, consisting of a total integrated luminosity of 37 inverse picobarns. Inclusive jet double-differential cross sections are presented as a function of jet transverse momentum, in bins of jet rapidity. Dijet double-differential cross sections are studied as a function of the dijet invariant mass, in bins of half the rapidity separation of the two leading jets. The measurements are performed in the jet rapidity range |y|<4.4, covering jet transverse momenta from 20 GeV to 1.5 TeV and dijet invariant masses from 70 GeV to 5 TeV. The data are compared to expectations based on next-to-leading order QCD calculations corrected for non-perturbative effects, as well as to next-to-leading order Monte Carlo predictions. In addition to a test of the theory in a new kinematic regime, the data also provide sensitivity to parton distribution functions in a region where they are currently not well-constrained.
Inclusive jet PT distribution for the |y| range 0.0-0.3 and R=0.4.
Inclusive jet PT distribution for the |y| range 0.3-0.8 and R=0.4.
Inclusive jet PT distribution for the |y| range 0.8-1.2 and R=0.4.
A search for pair-produced scalar particles decaying to a four-jet final state is presented. The analysis is performed using an integrated luminosity of 34 pb^-1 recorded by the ATLAS detector in 2010. No deviation from the Standard Model is observed. For a scalar mass of 100 GeV (190 GeV) the limit on the scalar gluon pair production cross section at 95% confidence level is 1 nb (0.28 nb). When these results are interpreted as mass limits, scalar-gluons (hyperpions) with masses of 100 to 185 GeV (100 to 155 GeV) are excluded at 95% confidence level with the exception of a mass window of width about 5 GeV (15 GeV) around 140 GeV.
The distributions of the momentum of the 4th jet.
The di-jet delta(R) distribution for the sgluon candidate with the highest PT jet after applying the PT cut of 55 GeV and pairing the four leading jets into 2 sgluon candidates.
The distribution in relative mass difference of the two sgluon candidates after application of the PT and di-jet delta(R) cuts.
A search for squarks and gluinos in events containing jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2011 by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in 1.04 fb^-1 of data. Gluino and squark masses below 700 GeV and 875 GeV respectively are excluded at the 95% confidence level in simplified models containing only squarks of the first two generations, a gluino octet and a massless neutralino. The exclusion limit increases to 1075 GeV for squarks and gluinos of equal mass. In MSUGRA/CMSSM models with tan(beta)=10, A_0=0 and mu> 0, squarks and gluinos of equal mass are excluded for masses below 950 GeV. These limits extend the region of supersymmetric parameter space excluded by previous measurements.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the two highest pT jets) for events with at least 2 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma error limits uncertainty band.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the three highest pT jets) for events with at least 3 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma error limits uncertainty band.
The distribution in Meff (scalar sum of the missing transverse momentum and the transverse momenta of the four highest pT jets) for events with at least 4 jets after the application of all selection criteria (other than the Meff cut itself). The table shows the number of observed data points per 100 GeV bin plus the background prediction of the Standard-Model Monte-Carlo and its upper and lower 1-sigma error limits uncertainty band.
Invariant mass distributions of jet pairs (dijets) produced in LHC proton-proton collisions at a centre-of-mass energy sqrt(s)=7 TeV have been studied using a data set corresponding to an integrated luminosity of 1.0 fb^-1 recorded in 2011 by ATLAS. Dijet masses up to ~4 TeV are observed in the data, and no evidence of resonance production over background is found. Limits are set at 95% CL for several new physics hypotheses: excited quarks are excluded for masses below 2.99 TeV, axigluons are excluded for masses below 3.32 TeV, and colour octet scalar resonances are excluded for masses below 1.92 TeV.
The observed di-jet mass distribution together with the background QCD prediction.
A measurement of jet activity in the rapidity interval bounded by a dijet system is presented. Events are vetoed if a jet with transverse momentum greater than 20 GeV is found between the two boundary jets. The fraction of dijet events that survive the jet veto is presented for boundary jets that are separated by up to six units of rapidity and with mean transverse momentum 50 < pT(avg) < 500 GeV. The mean multiplicity of jets above the veto scale in the rapidity interval bounded by the dijet system is also presented as an alternative method for quantifying perturbative QCD emission. The data are compared to a next-to-leading order plus parton shower prediction from the POWHEG-BOX, an all-order resummation using the HEJ calculation and the PYTHIA, HERWIG++ and ALPGEN event generators. The measurement was performed using pp collisions at sqrt(s)=7 TeV using data recorded by the ATLAS detector in 2010.
The Gap Fraction as a function of the mean transverse momentum of the boundary jets for boundary jets having a rapidity difference in the range [1,2], using a jet veto Q0 = 20 GeV. Data are shown for two dijet selections: (i) the dijet system is defined as the two leading-pT jets in the event (ii) the dijet system is defined as the most forward-backward jets in the event.
The Gap Fraction as a function of the mean transverse momentum of the boundary jets for boundary jets having a rapidity difference in the range [2,3], using a jet veto Q0 = 20 GeV. Data are shown for two dijet selections: (i) the dijet system is defined as the two leading-pT jets in the event (ii) the dijet system is defined as the most forward-backward jets in the event.
The Gap Fraction as a function of the mean transverse momentum of the boundary jets for boundary jets having a rapidity difference in the range [3,4], using a jet veto Q0 = 20 GeV. Data are shown for two dijet selections: (i) the dijet system is defined as the two leading-pT jets in the event (ii) the dijet system is defined as the most forward-backward jets in the event.