Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.
Per-nucleon cross section ratio for carbon to deuterium.
Per-nucleon cross section ratio for calcium to deuterium.
Per-nucleon cross section ratio for lead to deuterium.
A sample of Z0→τ+τ− events observed in the DELPHI detector at LEP in 1991 and 1992 is analysed to measure the τ polarisation in the exclusive decay channels\(ev\bar v\),\(\mu v\bar v\), πν, ρν and a1ν. The τ polarisation is also measured with an inclusive hadronic analysis which benefits from a higher efficiency and a better systematic precision than the use of the exclusive decay modes. The results have been combined with those published on the 1990 data. A measurement of the τ polarisation as a function of production angle yields the values for the mean τ polarisation 〈P〉τ=−0.148±0.022 and for the Z0 polarisationPZ=−0.136±0.027. These results are used to determine the ratio of vector to axial-vector effective couplings for taus\(\bar v_\tau/\bar a_\tau= 0.074 \pm 0.011\), and for electrons\(\bar v_e /\bar a_e= 0.068 \pm 0.014\), compatible with e-τ universality. With the assumption of lepton universality, the ratio of vector to axial-vector effective couplings for leptons\(\bar v_l /\bar a_l= 0.072 \pm 0.008\) is obtained, implying a value of the effective weak mixing angle sin2θefflept=0.2320±0.0021.
Results are for both TAU+ and TAU- decay.
The systematic error contains a systematic error of 0.003 common to all channels.
Errors are statistical only.
The ratio of the deuteron to proton structure functions is measured at very small Bjorken x (down to 10–6) and for Q2>0.001 GeV2 from scattering of 470 GeV muons on liquid hydrogen and deuterium targets. The ratio F2n/F2p extracted from these measurements is found to be constant, at a value of 0.935±0.008±0.034, for x<0.01. This result suggests the presence of nuclear shadowing effects in the deuteron. The dependence of the ratio on Q2 is also examined; no significant variation is found.
F2(N) / F2(P) = 2F2(DEUT)/F2(P) - 1.
F2(N) / F2(P) = 2F2(DEUT)/F2(P) - 1. The systematic uncertainty in the Q**2 dependece is negligible as compared to the statistical uncertainty.
The fragmentation topology of28Si at 3.7A GeV and 14.6A GeV and32S at 200A GeV in reactions with emulsion nuclei is presented. The fragmentation cross sections are very similar at all three energies. A statistical percolation model can qualitatively describe the data forZ≥ 6. The He production is underestimated and the 3 ≤Z ≤ 5 fragments overestimated by this model.
JINR.
BNL-815.
CERN-EMU-001.
In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.
No description provided.
PROJECTILE ASSOCIATED HE-FRAGMENTS.
No description provided.
We detected 1–10 MeV neutrons at laboratory angles from 80° to 140° in coincidence with 470 GeV muons deep inelastically scattered from H, D, C, Ca, and Pb targets. The neutron energy spectrum for Pb can be fitted with two components with temperature parameters of 0.7 and 5.0 MeV. The average neutron multiplicity for 40<ν<400 GeV is about 5 for Pb, and less than 2 for Ca and C. These data are consistent with a process in which the emitted hadrons do not interact with the rest of the nucleus within distances smaller than the radius of Ca, but do interact within distances on the order of the radius of Pb in the measured kinematic range. For all targets the lack of high nuclear excitation is surprising.
The energy spectrum for neutrons emitted from a thermalized nucleus may be expressed as a multiplicity per unit energy d(M)/d(E)=(M/T**2)*E*exp(-E/T) in which E is the neutron energy, M is the total multiplicity (isotropic in the nuclear frame), and T is the nuclear temperature. A fit by the sum of two exponentials.
Nuclear transparencies measured in exclusive incoherent ρ0 meson production from hydrogen, deuterium, carbon, calcium, and lead in muon-nucleus scattering are reported. The data were obtained with the E665 spectrometer using the Fermilab Tevatron muon beam with a mean beam energy of 470 GeV. Increases in the nuclear transparencies are observed as the virtuality of the photon increases, in qualitative agreement with the expectations of color transparency.
No description provided.
We report on the measurement of the leptonic and hadronic cross sections and leptonic forward-backward asymmetries at theZ peak with the L3 detector at LEP. The total luminosity of 40.8 pb−1 collected
Results from 1990 data. Additional systematic uncertainty of 0.3 pct.
Results from 1991 data. Additional systematic uncertainty of 0.15 pct.
Results from 1992 data. Additional systematic uncertainty of 0.15 pct.
During the 1992 running period of the LEP e + e − collider, the DELPHI experiment accumulated approximately 24 pb − of data at the Z 0 peak. The decays into hadrons and charged leptons have been analysed to give values for the cross sections and leptonic forward-backward asymmetries which are significantly improved with respect to those previously published by the DELPHI collaboration. Incorporating these new data, more precise values for the Z 0 resonance parameters are obtained from model-independent fits. The results are interpreted within the framework of the Standard Model, yielding for the top quark mass m t = 157 −48 +36 (expt.) −20 +19 (Higgs) GeV, and for the effective mixing angle sin 2 θ eff lept = 0.2328 ± 0.0013 (expt.) −0.0003 +0.0001 (Higgs), where (Higgs) represents the variation due to Higgs boson mass in the range 60 to 1000 GeV, with central value 300 GeV.
No description provided.
First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only. An acollinearity less that 10 deg.
Forward-backward asymmetry within the polar angular range 44 < THETA < 136 degrees and acollinearity < 10 degrees.. First result corresponds to the total cross section (i.e. S+T channel), while second one corresponds to S-channel only.
During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.
Hadronic cross sections from the 1990 data set. Additional systematic uncertainties come from efficiencies and background of 0.4 pct in addition to the luminosity uncertainty 0.7 pct.
Hadronic cross sections from the 1991 data set. Additional systematic uncertainties come from efficiencies and background of 0.2 pct in addition to the luminosity uncertainty 0.6 pct.
E+ E- cross sections from the 1990 data set for both final state fermions in the polar angle range 44 to 136 degrees and accollinearity < 10 degrees (the s + t data).