Toward the goal of experimentally determining the p-p elastic-scattering amplitudes at 6 GeV/c, we have measured a number of triple- and double-spin correlation parameters over the ‖t‖ range between 0.2 and 1.0 (GeV/c)2. These new data permit the first nucleon-nucleon amplitude determination in the multi-GeV energy range. Polarized beams from the Argonne Zero Gradient Synchrotron and polarized targets were utilized. The polarization of the recoil proton was measured with a carbon polarimeter. A total of 14 different spin observables were measured (five spin transfer, four depolarization, and five triple-spin correlation parameters). These have been combined with earlier results, resulting in a data set of typically 30 measurements of 20 different spin observables for each of six ‖t‖ values between 0.2 and 1.0 (GeV/c)2. A solution for the amplitudes has been found at each ‖t‖, and comparisons are presented with several different models. The spin-nonflip helicity amplitudes are found to be much larger than the spin-flip amplitudes.
No description provided.
No description provided.
We have measured the polarization for elastic scattering in the reaction π−p→π−p at 2.93 and 3.25 GeV/c using a polarized proton target and multiwire proportional chambers (MWPC's) with emphasis on large-angle scattering. Events were selected by fast scintillation-counter logic. Beam trajectories were measured with four MWPC's and the scattered-particle angles were measured with one or two MWPC's; elastic events were determined by coplanarity and angle-angle correlations. The polarization is in agreement with previous measurements below |t|=2.0 (GeV/c)2, and crosses from negative to positive near the secondary dip in the differential cross section dσdt. In the backward region, an energy dependence appears with the polarization being large and negative at 2.93 GeV/c and consistent with zero at 3.25 GeV/c.
No description provided.
No description provided.
Measurements of the polarization parameters and angular distributions are reported for π±p elastic scattering at 100 GeV/c and for pp elastic scattering at 100- and 300-GeV/c incident momentum. The π±p data cover the kinematic range 0.18≤−t≤1.10 GeV2 and are in agreement with current Regge-model predictions. The pp data cover the kinematic range 0.15≤−t≤1.10 GeV2 and 0.15≤−t≤2.00 GeV2 at 100 and 300 GeV/c, respectively, and are found to be consistent with absorption-model predictions.
THESE ANGULAR DISTRIBUTIONS AND POLARIZATION PARAMETERS ARE TABULATED IN THE RECORD OF THE EARLIER BRIEF REPORT OF THIS EXPERIMENT USING PION BEAMS: I. P. AUER ET AL., PRL 39, 313 (1977).
THESE ANGULAR DISTRIBUTIONS AND POLARIZATION PARAMETERS ARE TABULATED IN THE RECORD OF THE EARLIER BRIEF REPORT OF THIS EXPERIMENT USING A PROTON BEAM: J. H. SNYDER ET AL., PRL 41, 781 (1978) AND PRL 41, 1256(E) (1978).
Toward the goal of experimentally determining pp elastic scattering amplitudes at 6 GeV/c, we have measured a linear combination of triple-spin correlation parameters and also a linear combination of spintransfer parameters over the |t| range between 0.2 and 1.0 (GeV/c)2. A horizontally polarized beam (S direction) was obtained by precessing the spin of the polarized beam from the Argonne Zero Gradient Synchrotron using a superconducting solenoid. The target protons were polarized vertically (N direction) and the polarization of the recoil protons was measured with a carbon polarimeter. The results are consistent with the amplitude corresponding to π exchange being almost real and positive.
KSS = (S00S) AND HSNS = (SN0S) MEASURED HERE CONTAIN SMALL ADMIXTURES OF THE OTHER SPIN-TRANSFER AND TRIPLE-SPIN CORRELATION PARAMETERS RESPECTIVELY DUE TO THE POLARIZED TARGET MAGNETIC FIELD - SEE TEXT. MEAN VALUE OF HSNS OVER THIS T-RANGE IS 0.098 +- 0.085. PARITY CONSERVATION REQUIRES THE VANISHING OF THE PARAMETERS KSN, HSNN, (000S) AND DNS, WHILE (000N) MUST AGREE WITH THE SINGLE SCATTERING POLARIZATION PARAMETER (0N00).
We have measured the difference between the pp total cross sections for parallel and antiparallel longitudinal spin states at beam momenta of 2.75, 2.92, 3.25, and 3.48 GeV/c. These results reveal possible new structure in this momentum range.
Data read from graph. Statistical errors only.
Final results are presented of the proton-proton elastic-scattering spin parameters CSS=(S,S;0,0) and CLS=(L,S;0,0) for thetac.m.=8°–49° and of CLL=(L,L;0,0) for thetac.m.=8°–90° at 11.75 GeV/c. Comparisons to theoretical models are also made.
No description provided.
Measurements are reported of the difference ΔσL between proton-proton total cross sections for parallel and antiparallel spin states and of the parameter CLL for proton-proton elastic scattering near 90°, for thirteen energies between 300 and 800 MeV. The ΔσL results agree well with previous ANL ZGS and SIN data, but disagree with recent results from TRIUMF. Attempts to understand the cause of the discrepancy have been unsuccessful, but possible sources are discussed. The ΔσL and CLL results have been used with other experimental data to extract quantities which depend only on spin-singlet, coupled spin-triplet, and spin-triplet partial waves. Structure is found in these quantities, which appears to be associated with the resonantlike D21 and F33 partial waves. Additional similar structure is also found, which may be due either to the P03 partial wave or the (P23,F23) partial-wave pair.
ERROR IS STATISTICAL ONLY (ERROR IN BRACKETS IS STATISTICAL WITH THE ENERGY DEPENDENT UNCERTAINTIES FOLDED IN).
ERRORS ARE STATISTICAL ONLY. THERE IS ADDITION OF 2.0 AND 2.1 PCT SYSTEMATICS.
No description provided.
We have measured the difference between the pp total cross-sections for parallel and anti-parallel longitudinal spin states at beam momenta of 3 and 6 GeV/ c . These results, combined with our previous measurements, at lower momenta, are useful in clarifying a striking structure appearing at around 1.5 GeV/ c . We have also measured for the first time, the spin-spin correlation parameter C LL ( t ) in pp elastic scattering at 6 GeV/ c . We observe evidence for an exchange with A 1 -like quantum-numbers.
THE NEW DATA ON THE LONGITUDINAL CROSS SECTION DIFFERENCE, SIG(NAME=CLL) AT 3 AND 6 GEV ARE INCLUDED IN THE RECORD OF I. P. AUER ET AL., PL 67B, 113 (1977).
NOTE: HIGHER -T DATA ARE BEING ANALYSED. PUBLISHED GRAPH HAS LARGER ERRORS.
THESE NUMBERS APPEAR TO UPDATE THOSE REPORTED IN I. P. AUER ET AL., PRL 37, 1727 (76). NOTE: DATA MAY HAVE SMALLER ERROR BARS IN THE FINAL ANALYSIS.
We have measured the total cross-section difference for pp scattering in initial spin states parallel to the beam direction at beam momenta of 1.17, 1.47, 1.69, 1.97 and 2.49 GeV/ c . This measurement was done in a standard transmission experiment. A striking energy dependence is observed with a maximum difference of −16.9 mb at P lab = 1.47 GeV/ c .
PRELIMINARY RESULTS.
PRELIMINARY RESULTS.
Measurements of C LL of pp elastic scattering near θ c.m. = 90° at thirteen energies between 300 and 800 MeV are reported. These, together with previous values of C NN , are used to extract values of two quantities, ƒ s and ƒ t , which contain only spin-singlet and only coupled spin-triplet partial waves, respectively. The ƒ s curve, which is not dependent on C LL , exhibits the behavior expected for the previously conjectured 1 D 2 resonance. The ƒ t curve also exhibits a resonance-like behavior, which could be due either to the 3 P 0 or the 3 P 2 partial wave.
No description provided.
No description provided.
No description provided.