Showing 10 of 254 results
This paper presents cross sections for the production of a W boson in association with jets, measured in proton--proton collisions at $\sqrt{s}=7$ TeV with the ATLAS experiment at the Large Hadron Collider. With an integrated luminosity of $4.6 fb^{-1}$, this data set allows for an exploration of a large kinematic range, including jet production up to a transverse momentum of 1 TeV and multiplicities up to seven associated jets. The production cross sections for W bosons are measured in both the electron and muon decay channels. Differential cross sections for many observables are also presented including measurements of the jet observables such as the rapidities and the transverse momenta as well as measurements of event observables such as the scalar sums of the transverse momenta of the jets. The measurements are compared to numerous QCD predictions including next-to-leading-order perturbative calculations, resummation calculations and Monte Carlo generators.
Distribution of inclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in inclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of exclusive jet multiplicity.
Breakdown of systematic uncertainties in percent in exclusive jet multiplicity in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in exclusive jet multiplicity in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with exactly one jet in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with exactly one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with exactly one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (leading jet) [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (leading jet) [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (2nd jet) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in pT (2nd jet) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (2nd jet) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (3rd jet) [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in pT (3rd jet) [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (3rd jet) [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (4th jet) [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in pT (4th jet) [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (4th jet) [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of pT (5th jet) [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in pT (5th jet) [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in pT (5th jet) [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of leading jet rapidity with at least one jet in the event.
Breakdown of systematic uncertainties in percent in leading jet rapidity with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in leading jet rapidity with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 2nd jet rapidity with at least two jets in the event.
Breakdown of systematic uncertainties in percent in 2nd jet rapidity with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 2nd jet rapidity with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly one jet in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly two jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with exactly three jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with exactly three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of HT [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in HT [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of DPhi(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in DPhi(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in DPhi(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of Dy(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in Dy(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in Dy(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of DR(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in DR(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in DR(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of m(jj) [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in m(jj) [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in m(jj) [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 3rd jet rapidity with at least three jets in the event.
Breakdown of systematic uncertainties in percent in 3rd jet rapidity with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 3rd jet rapidity with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 4th jet rapidity with at least four jets in the event.
Breakdown of systematic uncertainties in percent in 4th jet rapidity with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 4th jet rapidity with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of 5th jet rapidity with at least five jets in the event.
Breakdown of systematic uncertainties in percent in 5th jet rapidity with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in 5th jet rapidity with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least one jet in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least one jet in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least one jet in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least two jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with exactly two jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly two jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly two jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least three jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with exactly three jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly three jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with exactly three jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least four jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least four jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least four jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Distribution of ST [GeV] with at least five jets in the event.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least five jets in the event in the electron channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
Breakdown of systematic uncertainties in percent in ST [GeV] with at least five jets in the event in the muon channel.Uncertainties have been symmetrised and the sign denotes the sign of the original up-variation.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
IRing2 for HT2>=500 GeV, NJets>=5
IRing2 for HT2>=1000 GeV, NJets>=2
IRing2 for HT2>=1000 GeV, NJets>=3
IRing2 for HT2>=1000 GeV, NJets>=4
IRing2 for HT2>=1000 GeV, NJets>=5
IRing2 for HT2>=1500 GeV, NJets>=2
IRing2 for HT2>=1500 GeV, NJets>=3
IRing2 for HT2>=1500 GeV, NJets>=4
IRing2 for HT2>=1500 GeV, NJets>=5
IRing128 for HT2>=500 GeV, NJets>=2
IRing128 for HT2>=500 GeV, NJets>=3
IRing128 for HT2>=500 GeV, NJets>=4
IRing128 for HT2>=500 GeV, NJets>=5
IRing128 for HT2>=1000 GeV, NJets>=2
IRing128 for HT2>=1000 GeV, NJets>=3
IRing128 for HT2>=1000 GeV, NJets>=4
IRing128 for HT2>=1000 GeV, NJets>=5
IRing128 for HT2>=1500 GeV, NJets>=2
IRing128 for HT2>=1500 GeV, NJets>=3
IRing128 for HT2>=1500 GeV, NJets>=4
IRing128 for HT2>=1500 GeV, NJets>=5
ICyl16 for HT2>=500 GeV, NJets>=2
ICyl16 for HT2>=500 GeV, NJets>=3
ICyl16 for HT2>=500 GeV, NJets>=4
ICyl16 for HT2>=500 GeV, NJets>=5
ICyl16 for HT2>=1000 GeV, NJets>=2
ICyl16 for HT2>=1000 GeV, NJets>=3
ICyl16 for HT2>=1000 GeV, NJets>=4
ICyl16 for HT2>=1000 GeV, NJets>=5
ICyl16 for HT2>=1500 GeV, NJets>=2
ICyl16 for HT2>=1500 GeV, NJets>=3
ICyl16 for HT2>=1500 GeV, NJets>=4
ICyl16 for HT2>=1500 GeV, NJets>=5
IRing2 covariance for HT2>=500 GeV, NJets>=2 (Table 1)
IRing2 covariance for HT2>=500 GeV, NJets>=3 (Table 2)
IRing2 covariance for HT2>=500 GeV, NJets>=4 (Table 3)
IRing2 covariance for HT2>=500 GeV, NJets>=5 (Table 4)
IRing2 covariance for HT2>=1000 GeV, NJets>=2 (Table 5)
IRing2 covariance for HT2>=1000 GeV, NJets>=3 (Table 6)
IRing2 covariance for HT2>=1000 GeV, NJets>=4 (Table 7)
IRing2 covariance for HT2>=1000 GeV, NJets>=5 (Table 8)
IRing2 covariance for HT2>=1500 GeV, NJets>=2 (Table 9)
IRing2 covariance for HT2>=1500 GeV, NJets>=3 (Table 10)
IRing2 covariance for HT2>=1500 GeV, NJets>=4 (Table 11)
IRing2 covariance for HT2>=1500 GeV, NJets>=5 (Table 12)
IRing128 covariance for HT2>=500 GeV, NJets>=2 (Table 13)
IRing128 covariance for HT2>=500 GeV, NJets>=3 (Table 14)
IRing128 covariance for HT2>=500 GeV, NJets>=4 (Table 15)
IRing128 covariance for HT2>=500 GeV, NJets>=5 (Table 16)
IRing128 covariance for HT2>=1000 GeV, NJets>=2 (Table 17)
IRing128 covariance for HT2>=1000 GeV, NJets>=3 (Table 18)
IRing128 covariance for HT2>=1000 GeV, NJets>=4 (Table 19)
IRing128 covariance for HT2>=1000 GeV, NJets>=5 (Table 20)
IRing128 covariance for HT2>=1500 GeV, NJets>=2 (Table 21)
IRing128 covariance for HT2>=1500 GeV, NJets>=3 (Table 22)
IRing128 covariance for HT2>=1500 GeV, NJets>=4 (Table 23)
IRing128 covariance for HT2>=1500 GeV, NJets>=5 (Table 24)
ICyl16 covariance for HT2>=500 GeV, NJets>=2 (Table 25)
ICyl16 covariance for HT2>=500 GeV, NJets>=3 (Table 26)
ICyl16 covariance for HT2>=500 GeV, NJets>=4 (Table 27)
ICyl16 covariance for HT2>=500 GeV, NJets>=5 (Table 28)
ICyl16 covariance for HT2>=1000 GeV, NJets>=2 (Table 29)
ICyl16 covariance for HT2>=1000 GeV, NJets>=3 (Table 30)
ICyl16 covariance for HT2>=1000 GeV, NJets>=4 (Table 31)
ICyl16 covariance for HT2>=1000 GeV, NJets>=5 (Table 32)
ICyl16 covariance for HT2>=1500 GeV, NJets>=2 (Table 33)
ICyl16 covariance for HT2>=1500 GeV, NJets>=3 (Table 34)
ICyl16 covariance for HT2>=1500 GeV, NJets>=4 (Table 35)
ICyl16 covariance for HT2>=1500 GeV, NJets>=5 (Table 36)
IRing2 covariance, complete
1-IRing128 covariance, complete
1-ICyl16 covariance, complete
A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.
Naming convention for the observables at different levels of the analysis. At the background-subtracted level the contributions of tracks from pile-up collisions and tracks from secondary vertices are subtracted. At the corrected level the tracking-efficiency correction (TEC) is applied. The observables at particle level are the analysis results.
The $\chi^2$ and NDF for measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Normalised differential cross-section as a function of $n_\text{ch}$.
Normalised differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n\text{ch}$ in $ n_\text{ch} \geq 80$.
The $\chi^2$ and NDF for measured absolute differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Absolute differential cross-section as a function of $n_\text{ch}$.
Absolute differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n\text{ch}$ in $ n_\text{ch} \geq 80$.
A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.
Numbers of observed and background events for SR0b for each bin of the distribution in Meff. The table corresponds to Fig. 4(b). The statistical and systematic uncertainties are combined for the expected backgrounds.
Numbers of observed and background events for SR1b for each bin of the distribution in Meff. The table corresponds to Fig. 4(c). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3b for each bin of the distribution in Meff. The table corresponds to Fig. 4(a). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L low for each bin of the distribution in Meff. The table corresponds to Fig. 4(d). The statistical and systematic uncertainties are combined for the predicted numbers.
Numbers of observed and background events for SR3L high for each bin of the distribution in Meff. The table corresponds to Fig. 4(e). The statistical and systematic uncertainties are combined for the predicted numbers.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The efficiencies are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The efficiencies are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The efficiencies are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into b s and gluinos decay into t stop (see Fig. 5d in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The efficiencies are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The efficiencies are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The acceptances (in percent, %) are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The acceptances (in percent, %) are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The acceptances (in percent, %) are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The acceptances (in percent, %) are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The acceptances (in percent, %) are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The limits on observed cross section are calculated for all simplified models. The simplified models are for direct pair production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The limits on observed cross sections are calculated for all simplified models. The simplified models are for direct pair production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop)-20 GeV.
The signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Experimental uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Experimental uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Experimental uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Experimental uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
Statistical uncertainties on the signal event yields are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
Statistical uncertainties on the signal event yields are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
Statistical uncertainties on the signal event yields are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the values are given for the five signal regions and their combination. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
Statistical uncertainties on the signal event yields are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W ^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluino), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of gluinos that decay into t tbar t tbar chi1^0 chi1^0 (see Fig. 5a in the paper). This particular model assumes that top quark is much heavier than gluino.
The confidence levels are calculated for all simplified models. For each model, the observed and expected values are given. The simplified model is for direct production of squarks that decay into two steps into q q W Z W Z chi1^0 chi1^0 (see Fig. 6c in the paper).
The confidence levels are calculated for all simplified models. For each model, the values are given for the five signal regions and their combination. The simplified model is for direct pair-production of gluinos that decay via a two-step process into q q q q W Z W Z chi1^0 chi1^0 (see Fig. 6b in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay via sleptons into q q q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6d in the paper).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct pair-production of gluinos. A gluino decays into t stop. Consequently, a top squark squark decays into b chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 5b in the paper). This particular model assumes that m(stop) < m(gluion), m(chi1^0)=6 GeV, and m(chi1^(+-))=118 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos. A gluino decays into t c chi1^0 (see Fig. 5c in the paper). This particular model assumes that m(chi1^0) = m(stop) - 20 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7b in the paper). This particular model assumes that m(chi1^0)=2(chi1^0).
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of bottom squarks. A bottom squark decays into t chi1^(+-) and chi1^(+-) --> W^(+-) chi1^0 (see Fig. 7a in the paper). This particular model assumes that m(chi1^0)=60 GeV.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of squarks. Squarks decay into q q l l (l l) chi1^0 chi1^0 + neutrinos (see Fig. 6e in the paper).
The confidence levels are calculated for all GMSB models (see Fig. 8c in the paper). For each model, the expected and observed values are given. The model assumes mmess=250 TeV, m5=3, mu>0, and Cgrav=1.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos and top squarks. Top squarks undergo R-parity violating decays into bs and gluinos decay into t stop (see Fig. 5d in the paper).
The confidence levels are calculated for all mSUGRA/CMSSM models with bRPV (see Fig. 8b in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, mu>0, and bRPV.
The confidence levels are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the expected and observed values are given.
The confidence levels are calculated for all simplified models. For each model, the expected and observed values are given. The simplified model is for direct production of gluinos that decay into q q q q W W chi1^0 chi1^0 (see Fig. 6a in the paper).
The confidence levels are calculated for all mSUGRA models (see Fig. 8a in the paper). For each model, the expected and observed values are given. The model assumes tan(beta)=30, A0=2m0, and mu>0.
Various differential cross-sections are measured in top-quark pair ($t\bar{t}$) events produced in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV at the LHC with the ATLAS detector. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of $4.6$ fb$^{-1}$. The differential cross-sections are presented in terms of kinematic variables, such as momentum, rapidity and invariant mass, of a top-quark proxyreferred to as the pseudo-top-quark as well as the pseudo-top-quark pair system. The dependence of the measurement on theoretical models is minimal. The measurements are performed on $t\bar{t}$ events in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a $b$-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the $W$ boson produced by the top-quark decay in events with a single charged lepton. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$in the muon channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$ in the electron channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $|y(\hat{t}_{\mathrm{h}})|$ in the muon channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $|y(\hat{t}_{\mathrm{h}})|$ in the electron channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the leptonic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{l}})$ in the muon channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the leptonic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{l}})$ in the electron channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the leptonic pseudo-top-quark $|y(\hat{t}_{\mathrm{l}})|$ in the muon channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the leptonic pseudo-top-quark $|y(\hat{t}_{\mathrm{l}})|$ in the electron channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the pseudo-top-quark-pair $p_{\mathrm{T}}(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})$ in the muon channel.The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the pseudo-top-quark-pair $p_{\mathrm{T}}(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})$ in the electron channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the pseudo-top-quark-pair $|y(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})|$ in the muon channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the pseudo-top-quark-pair $|y(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})|$ in the electron channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the pseudo-top-quark-pair $m(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})$ in the muon channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the pseudo-top-quark-pair $m(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})$ in the electron channel. The results shown in this table are one of the inputs for the combined results.
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{h}})$ after the electron and muon channel combination. The results shown in this table correspond to the results presented in figure 11(a).
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the hadronic pseudo-top-quark $|y(\hat{t}_{\mathrm{h}})|$ after the electron and muon channel combination. The results shown in this table correspond to the results presentedin figure 12(a).
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of theleptonic pseudo-top-quark $p_{\mathrm{T}}(\hat{t}_{\mathrm{l}})$ after the electron and muon channel combination.The results shown in this table correspond to the results presented in figure 11(b).
Measured $t\bar{t}$ differential cross-section and relative uncertaintyas a function of the leptonic pseudo-top-quark $|y(\hat{t}_{\mathrm{l}})|$ after the electron and muon channel combination.The results shown in this table correspond to the results presented in figure 12(b).
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function ofthe pseudo-top-quark-pair $p_{\mathrm{T}}(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})$ after the electron and muon channel combination.The results shown in this table correspond to the results presented in figure 13(a).
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the pseudo-top-quark-pair $|y(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})|$ after the electron and muon channel combination.The results shown in this table correspond to the results presented in figure 13(b).
Measured $t\bar{t}$ differential cross-section and relative uncertainty as a function of the pseudo-top-quark-pair $m(\hat{t}_{\mathrm{l}}\hat{t}_{\mathrm{h}})$after the electron and muon channel combination. The results shown in this table correspond to the results presented in figure 13(c).
This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
Measured and predicted fiducial cross-section results for additional b-jet production in four phase-space regions. The dashes (–) indicate that the predictions are not available. The differences between the various MC generator predictions are smaller than the size of theoretical uncertainties (20%–50%, not presented here) in the predictions.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $l/c$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $H_{\text{T}}^{\text{had}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R_{\text{avg}}^{bb}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{3})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $p_{\text{T}}(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{min}\Delta R})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{min}\Delta R})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{3})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta R(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(e\mu bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(l/c\text{-jet}_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $\Delta\eta_{\text{max}}^{jj}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $H_{\text{T}}^{\text{all}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $m(e\mu b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{2})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{1}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of $|\eta(b_{2}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{3})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{4})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $H_{\text{T}}^{\text{all}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(e\mu b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(e\mu bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $H_{\text{T}}^{\text{had}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\text{min}\Delta R(bb)$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta R_{\text{avg}}^{bb}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta\eta_{\text{max}}^{jj}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of the number of $l/c$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $|\eta(l/c\text{-jet}_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{2})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at leastfour $b$-jets as a function of $|\eta(b_{2}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{3})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{4})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{2}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
The measured normalised differential cross-section as a function of $N_{b-\text{jets}}$ in the $e\mu+\geq2b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{had}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{all}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R_{\text{avg}}^{bb}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta\eta_{\text{max}}^{jj}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{3})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{top}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{top}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{3})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{add}})|$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu bb^{\text{top}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(b_{1}b_{2})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $N_{l/c-\text{jets}}$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the $e\mu+\geq3b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}},l/c-\text{jet})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(l/c\text{-jet}_{1})|$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the $e\mu+\geq3b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{had}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{all}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R_{\text{avg}}^{bb}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta\eta_{\text{max}}^{jj}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{3})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{4})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{top}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{top}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{3})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{add}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{4})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{add}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{min}\Delta R})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{min}\Delta R})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\text{min}\Delta R(bb)$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $N_{l/c-\text{jets}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(l/c\text{-jet}_{1})|$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{b-\text{jets}}$ in the phase space with at least two b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{b-\text{jets}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{had}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{all}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R_{\text{avg}}^{bb}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta\eta_{\text{max}}^{jj}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{3})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{3})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{add}})|$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu bb^{\text{top}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(b_{1}b_{2})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{l/c-\text{jets}}$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the phase space with at least three b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}},l/c-\text{jet})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(l/c\text{-jet}_{1})|$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the phase space with at least three b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{had}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{all}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R_{\text{avg}}^{bb}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta\eta_{\text{max}}^{jj}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{3})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{4})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{top}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{3})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{add}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{4})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{add}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{min}\Delta R})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{min}\Delta R})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\text{min}\Delta R(bb)$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{l/c-\text{jets}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(l/c\text{-jet}_{1})|$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
Measurements of inclusive and differential production cross-sections of a top-quark-top-antiquark pair in association with a $W$ boson ($t\bar{t}W$) are presented. They are performed by targeting final states with two same-sign or three isolated leptons (electrons or muons) and are based on $\sqrt{s}=13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The inclusive $t\bar{t}W$ production cross-section is measured to be $880 \pm 80$ fb, compared to a reference theoretical prediction of $745 \pm 50\,\textrm{(scale)} \pm 13\,\textrm{(2-loop approx.)} \pm 19\,\textrm{(PDF,} \alpha_{\textrm{S}})$ fb. Differential cross-section measurements characterise this process in detail for the first time. Several particle-level observables are compared with a variety of theoretical predictions, which generally agree well with the normalised differential cross-section results. Additionally, the relative charge asymmetry of $t\bar{t}W^{+}$ and $t\bar{t}W^{-}$ is measured inclusively to be ${A_{\mathrm{C}}^{\mathrm{rel}}} = 0.33 \pm 0.05$, in very good agreement with the theoretical prediction of $0.322 \pm 0.003\,\mathrm{(scale)} \pm 0.007\,\mathrm{(PDF)}$, as well as differentially.
Distributions sensitive to the underlying event in QCD jet events have been measured with the ATLAS detector at the LHC, based on 37/pb of proton-proton collision data collected at a centre-of-mass energy of 7 TeV. Charged-particle mean $p_T$ and densities of all-particle $E_T$ and charged-particle multiplicity and $p_T$ have been measured in regions azimuthally transverse to the hardest jet in each event. These are presented both as one-dimensional distributions and with their mean values as functions of the leading-jet transverse momentum from 20 GeV to 800 GeV. The correlation of charged-particle mean $p_T$ with charged-particle multiplicity is also studied, and the $E_T$ densities include the forward rapidity region; these features provide extra data constraints for Monte Carlo modelling of colour reconnection and beam-remnant effects respectively. For the first time, underlying event observables have been computed separately for inclusive jet and exclusive dijet event selections, allowing more detailed study of the interplay of multiple partonic scattering and QCD radiation contributions to the underlying event. Comparisons to the predictions of different Monte Carlo models show a need for further model tuning, but the standard approach is found to generally reproduce the features of the underlying event in both types of event selection.
Properties of the underlying-event in $pp$ interactions are investigated primarily via the strange hadrons $K_{S}^{0}$, $\Lambda$ and $\bar\Lambda$, as reconstructed using the ATLAS detector at the LHC in minimum-bias $pp$ collision data at $\sqrt{s} = 13$ TeV. The hadrons are reconstructed via the identification of the displaced two-particle vertices corresponding to the decay modes $K_{S}^{0}\rightarrow\pi^+\pi^-$, $\Lambda\rightarrow\pi^-p$ and $\bar\Lambda\rightarrow\pi^+\bar{p}$. These are used in the construction of underlying-event observables in azimuthal regions computed relative to the leading charged-particle jet in the event. None of the hadronisation and underlying-event physics models considered can describe the data over the full kinematic range considered. Events with a leading charged-particle jet in the range of $10 < p_T \leq 40$ GeV are studied using the number of prompt charged particles in the transverse region. The ratio $N(\Lambda + \bar\Lambda)/N(K_{S}^{0})$ as a function of the number of such charged particles varies only slightly over this range. This disagrees with the expectations of some of the considered Monte Carlo models.
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the away region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the towards region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the transverse region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the away region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the towards region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the transverse region vs. $N_\textrm{ch,trans}$
A measurement of charged-particle distributions sensitive to the properties of the underlying event is presented for an inclusive sample of events containing a Z-boson , decaying to an electron or muon pair. The measurement is based on data collected using the ATLAS detector at the LHC in proton-proton collisions at a centre-of-mass energy of 7 TeV with an integrated luminosity of $4.6$ fb$^{-1}$. Distributions of the charged particle multiplicity and of the charged particle transverse momentum are measured in regions of azimuthal angle defined with respect to the Z-boson direction. The measured distributions are compared to similar distributions measured in jet events, and to the predictions of various Monte Carlo generators implementing different underlying event models.
Towards scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Away scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Away charged multiplicity density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 0 - 5 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 5 - 10 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 10 - 20 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 20 - 50 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 50 - 110 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 110 - 500 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 0 - 5 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 5 - 10 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 10 - 20 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 20 - 50 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 50 - 110 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 110 - 500 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 0 - 5 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 5 - 10 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 10 - 20 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 20 - 50 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 50 - 110 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 110 - 500 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 0 - 5 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 5 - 10 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 10 - 20 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 20 - 50 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 50 - 110 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 110 - 500 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 0 - 5 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 5 - 10 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 10 - 20 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 20 - 50 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 50 - 110 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 110 - 500 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 0 - 5 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 5 - 10 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 10 - 20 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 20 - 50 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 50 - 110 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 110 - 500 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards <mean pT(charged)> vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse <mean pT(charged)> vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Away <mean pT(charged)> vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Towards <mean pT(charged)> vs charged multiplicity, Born leptons : Statistical and systematic errors are added in quadrature.
Transverse <mean pT(charged)> vs charged multiplicity, Born leptons : Statistical and systematic errors are added in quadrature.
Away <mean pT(charged)> vs charged multiplicity, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 0 - 5 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 5 - 10 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 10 - 20 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 20 - 50 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 50 - 110 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 110 - 500 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.diff. scalar pT sum density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.diff. charged multiplicity density vs Z-boson pT, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 0 - 5 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 5 - 10 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 10 - 20 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 20 - 50 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 50 - 110 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 110 - 500 GeV, Born leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Away scalar pT sum density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Away charged multiplicity density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 0 - 5 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 5 - 10 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 10 - 20 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 20 - 50 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 50 - 110 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards scalar pT sum distribution, Z-boson pT = 110 - 500 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 0 - 5 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 5 - 10 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 10 - 20 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 20 - 50 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 50 - 110 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards charged multiplicity distribution, Z-boson pT = 110 - 500 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 0 - 5 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 5 - 10 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 10 - 20 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 20 - 50 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 50 - 110 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse charged multiplicity distribution, Z-boson pT = 110 - 500 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 0 - 5 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 5 - 10 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 10 - 20 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 20 - 50 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 50 - 110 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. charged multiplicity distribution, Z-boson pT = 110 - 500 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 0 - 5 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 5 - 10 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 10 - 20 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 20 - 50 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 50 - 110 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. charged multiplicity distribution, Z-boson pT = 110 - 500 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 0 - 5 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 5 - 10 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 10 - 20 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 20 - 50 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 50 - 110 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse scalar pT sum distribution, Z-boson pT = 110 - 500 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards <mean pT(charged)> vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse <mean pT(charged)> vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Away <mean pT(charged)> vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Towards <mean pT(charged)> vs charged multiplicity, dressed leptons : Statistical and systematic errors are added in quadrature.
Transverse <mean pT(charged)> vs charged multiplicity, dressed leptons : Statistical and systematic errors are added in quadrature.
Away <mean pT(charged)> vs charged multiplicity, dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 0 - 5 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 5 - 10 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 10 - 20 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 20 - 50 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 50 - 110 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.min. scalar pT sum distribution, Z-boson pT = 110 - 500 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.diff. scalar pT sum density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.diff. charged multiplicity density vs Z-boson pT, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 0 - 5 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 5 - 10 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 10 - 20 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 20 - 50 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 50 - 110 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
Trans.max. scalar pT sum distribution, Z-boson pT = 110 - 500 GeV, Dressed leptons : Statistical and systematic errors are added in quadrature.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.