Date

Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 234, 2023.
Inspire Record 2653332 DOI 10.17182/hepdata.140956

A search for forward proton scattering in association with light-by-light scattering mediated by an axion-like particle is presented, using the ATLAS Forward Proton spectrometer to detect scattered protons and the central ATLAS detector to detect pairs of outgoing photons. Proton-proton collision data recorded in 2017 at a centre-of-mass energy of $\sqrt{s} = 13$ TeV were analysed, corresponding to an integrated luminosity of 14.6 fb$^{-1}$. A total of 441 candidate signal events were selected. A search was made for a narrow resonance in the diphoton mass distribution, corresponding to an axion-like particle (ALP) with mass in the range 150-1600 GeV. No excess is observed above a smooth background. Upper limits on the production cross section of a narrow resonance are set as a function of the mass, and are interpreted as upper limits on the ALP production coupling constant, assuming 100% decay branching ratio into a photon pair. The inferred upper limit on the coupling constant is in the range 0.04-0.09 TeV$^{-1}$ at 95%confidence level.

9 data tables

Signal selection efficiency as a function of ALP mass $m_{\textrm{X}}$ for the exclusive (EL), single-dissociative (SD), and double-dissociative (DD) processes. The ratio of the number of selected events to the number of generated MC events is given (black points) and is parameterised by an analytic function (red solid line). The linear (black dashed line) and cubic (blue chain line) interpolations of the black points are used to derive the envelopes (cyan filled region) which are regarded as systematic uncertainties.

The diphoton mass distribution of the mixed-data sample (black points).

The $(\xi_{\gamma\gamma}^{+},\xi_{\gamma\gamma}^{-})$ distribution of the selected data candidates after the full event selection in $m_{\gamma\gamma}$ in [150,1600] GeV with $m_{\gamma\gamma}$ contours (blue) and $y_{\gamma\gamma}$ contours (black). The range of $\xi_{\gamma\gamma}$ in which forward-proton matching is possible, $[0.035-\xi_{\textrm{th}}, 0.08+\xi_{\textrm{th}} ]$, for events that pass the matching requirement to the A or C side as indicated. No event passed the matching requirement for both the A-side and C-side.

More…

Event-by-event correlations between $\Lambda$ ($\bar{\Lambda}$) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 27 \text{ GeV}$ from STAR

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 108 (2023) 014909, 2023.
Inspire Record 2652850 DOI 10.17182/hepdata.140262

Global polarizations ($P$) of $\Lambda$ ($\bar{\Lambda}$) hyperons have been observed in non-central heavy-ion collisions. The strong magnetic field primarily created by the spectator protons in such collisions would split the $\Lambda$ and $\bar{\Lambda}$ global polarizations ($\Delta P = P_{\Lambda} - P_{\bar{\Lambda}} < 0$). Additionally, quantum chromodynamics (QCD) predicts topological charge fluctuations in vacuum, resulting in a chirality imbalance or parity violation in a local domain. This would give rise to an imbalance ($\Delta n = \frac{N_{\text{L}} - N_{\text{R}}}{\langle N_{\text{L}} + N_{\text{R}} \rangle} \neq 0$) between left- and right-handed $\Lambda$ ($\bar{\Lambda}$) as well as a charge separation along the magnetic field, referred to as the chiral magnetic effect (CME). This charge separation can be characterized by the parity-even azimuthal correlator ($\Delta\gamma$) and parity-odd azimuthal harmonic observable ($\Delta a_{1}$). Measurements of $\Delta P$, $\Delta\gamma$, and $\Delta a_{1}$ have not led to definitive conclusions concerning the CME or the magnetic field, and $\Delta n$ has not been measured previously. Correlations among these observables may reveal new insights. This paper reports measurements of correlation between $\Delta n$ and $\Delta a_{1}$, which is sensitive to chirality fluctuations, and correlation between $\Delta P$ and $\Delta\gamma$ sensitive to magnetic field in Au+Au collisions at 27 GeV. For both measurements, no correlations have been observed beyond statistical fluctuations.

19 data tables

Figure 1

Figure 2ab

Figure 2c

More…

Search for heavy Majorana or Dirac neutrinos and right-handed $W$ gauge bosons in final states with charged leptons and jets in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 1164, 2023.
Inspire Record 2652625 DOI 10.17182/hepdata.141277

A search for heavy right-handed Majorana or Dirac neutrinos $N_{\mathrm{R}}$ and heavy right-handed gauge bosons $W_{\mathrm{R}}$ is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (``resolved'' channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (``boosted'' channel). The events are selected from $pp$ collision data at the LHC with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at $\sqrt{s}$ = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy right-handed $W_{\mathrm{R}}$ boson and $N_{\mathrm{R}}$ plane. The excluded region extends to about $m(W_{\mathrm{R}}) = 6.4$ TeV for both Majorana and Dirac $N_{\mathrm{R}}$ neutrinos at $m(N_{\mathrm{R}})<1$ TeV. $N_{\mathrm{R}}$ with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at $m(W_{\mathrm{R}})=4.8$ TeV for the Majorana neutrinos, and limits of $m(N_{\mathrm{R}})$ up to 3.6 TeV for $m(W_{\mathrm{R}}) = 5.2$ (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered.

40 data tables

Observed 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the electron channel for boosted.

Expected 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the electron channel for boosted.

Observed 95% CL exclusion contours in the $(m(W_{R}), m(N_{R}))$ plane in the muon channel for boosted.

More…

Measurement of the J/$\psi $ photoproduction cross section over the full near-threshold kinematic region

The GlueX collaboration Adhikari, S. ; Afzal, F. ; Akondi, C.S. ; et al.
Phys.Rev.C 108 (2023) 025201, 2023.
Inspire Record 2649988 DOI 10.17182/hepdata.140802

We report the total and differential cross sections for $J/\psi$ photoproduction with the large acceptance GlueX spectrometer for photon beam energies from the threshold at 8.2~GeV up to 11.44~GeV and over the full kinematic range of momentum transfer squared, $t$. Such coverage facilitates the extrapolation of the differential cross sections to the forward ($t = 0$) point beyond the physical region. The forward cross section is used by many theoretical models and plays an important role in understanding $J/\psi$ photoproduction and its relation to the $J/\psi-$proton interaction. These measurements of $J/\psi$ photoproduction near threshold are also crucial inputs to theoretical models that are used to study important aspects of the gluon structure of the proton, such as the gluon Generalized Parton Distribution (GPD) of the proton, the mass radius of the proton, and the trace anomaly contribution to the proton mass. We observe possible structures in the total cross section energy dependence and find evidence for contributions beyond gluon exchange in the differential cross section close to threshold, both of which are consistent with contributions from open-charm intermediate states.

4 data tables

$\gamma p \rightarrow J/\psi p$ total cross sections in bins of beam energy. The first uncertainties are statistical, and the second are systematic. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.

$\gamma p \rightarrow J/\psi p$ differential cross sections 8.2–9.28 GeV beam energy range, average $t$ and beam energy in bins of $t$. The first cross section uncertainties are statistical, and the second are systematic. The overall average beam energy is 8.93 GeV. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.

$\gamma p \rightarrow J/\psi p$ differential cross sections 9.28–10.36 GeV beam energy range, average $t$ and beam energy in bins of $t$. The first cross section uncertainties are statistical, and the second are systematic. The overall average beam energy is 9.86 GeV. There is an additional fully correlated systematic uncertainty of 19.5% on the total cross section, not included here.

More…

Observation of the electromagnetic field effect via charge-dependent directed flow in heavy-ion collisions at the Relativistic Heavy Ion Collider

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.X 14 (2024) 011028, 2024.
Inspire Record 2649979 DOI 10.17182/hepdata.139915

The deconfined quark-gluon plasma (QGP) created in relativistic heavy-ion collisions enables the exploration of the fundamental properties of matter under extreme conditions. Non-central collisions can produce strong magnetic fields on the order of $10^{18}$ Gauss, which offers a probe into the electrical conductivity of the QGP. In particular, quarks and anti-quarks carry opposite charges and receive contrary electromagnetic forces that alter their momenta. This phenomenon can be manifested in the collective motion of final-state particles, specifically in the rapidity-odd directed flow, denoted as $v_1(\mathsf{y})$. Here we present the charge-dependent measurements of $dv_1/d\mathsf{y}$ near midrapidities for $\pi^{\pm}$, $K^{\pm}$, and $p(\bar{p})$ in Au+Au and isobar ($_{44}^{96}$Ru+$_{44}^{96}$Ru and $_{40}^{96}$Zr+$_{40}^{96}$Zr) collisions at $\sqrt{s_{\rm NN}}=$ 200 GeV, and in Au+Au collisions at 27 GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. The combined dependence of the $v_1$ signal on collision system, particle species, and collision centrality can be qualitatively and semi-quantitatively understood as several effects on constituent quarks. While the results in central events can be explained by the $u$ and $d$ quarks transported from initial-state nuclei, those in peripheral events reveal the impacts of the electromagnetic field on the QGP. Our data put valuable constraints on the electrical conductivity of the QGP in theoretical calculations.

9 data tables

Directed flow of $p$ and $\bar{p}$ vs rapidity in Au+Au 200 GeV 50-80% centrality.

Directed flow of $p$ and $\bar{p}$ vs rapidity in Zr+Zr and Ru+Ru 200 GeV (combined) 50-80% centrality.

Directed flow of $p$ and $\bar{p}$ vs rapidity in Au+Au 27 GeV 50-80% centrality.

More…

Version 2
Probing small Bjorken-$x$ nuclear gluonic structure via coherent J/$\psi$ photoproduction in ultraperipheral PbPb collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.Lett. 131 (2023) 262301, 2023.
Inspire Record 2648536 DOI 10.17182/hepdata.138867

Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/$\psi$ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W$^\text{Pb}_{\gamma\text{N}}$), over a wide range of 40 $\lt$ W$^\text{Pb}_{\gamma\text{N}}$$\lt$ 400 GeV. Results are obtained using data at the nucleon-nucleon center-of-mass energy of 5.02 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 1.52 nb$^{-1}$. The cross section is observed to rise rapidly at low W$^\text{Pb}_{\gamma\text{N}}$, and plateau above W$^\text{Pb}_{\gamma\text{N}}$$\approx$ 40 GeV, up to 400 GeV, a new regime of small Bjorken-$x$ ($\approx$ 6 $\times$ 10$^{-5}$) gluons being probed in a heavy nucleus. The observed energy dependence is not predicted by current quantum chromodynamic models.

16 data tables

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The differential coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of rapidity, in different neutron multiplicity classes: 0n0n, 0nXn, XnXn , and AnAn.

The total coherent $\mathrm{J}/\psi$ photoproduction cross section as a function of photon-nuclear center-of-mass energy per nucleon $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$, measured in PbPb ultra-peripheral collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The $W_{\gamma \mathrm{N}}^{\mathrm{Pb}}$ values used correspond to the center of each rapidity range. The theoretical uncertainties is due to the uncertainties in the photon flux.

More…

Observation of four-top-quark production in the multilepton final state with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 496, 2023.
Inspire Record 2648095 DOI 10.17182/hepdata.140801

This paper presents the observation of four-top-quark ($t\bar{t}t\bar{t}$) production in proton-proton collisions at the LHC. The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV collected using the ATLAS detector. Events containing two leptons with the same electric charge or at least three leptons (electrons or muons) are selected. Event kinematics are used to separate signal from background through a multivariate discriminant, and dedicated control regions are used to constrain the dominant backgrounds. The observed (expected) significance of the measured $t\bar{t}t\bar{t}$ signal with respect to the standard model (SM) background-only hypothesis is 6.1 (4.3) standard deviations. The $t\bar{t}t\bar{t}$ production cross section is measured to be $22.5^{+6.6}_{-5.5}$ fb, consistent with the SM prediction of $12.0 \pm 2.4$ fb within 1.8 standard deviations. Data are also used to set limits on the three-top-quark production cross section, being an irreducible background not measured previously, and to constrain the top-Higgs Yukawa coupling and effective field theory operator coefficients that affect $t\bar{t}t\bar{t}$ production.

27 data tables

Post-fit distributions for the number of jets ($N_{j}$) in CR $t\bar{t}W^{+}$+jets. The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.

Post-fit distributions for the number of jets ($N_{j}$) in CR $t\bar{t}W^{-}$+jets. The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.

Post-fit distributions for the number of jets ($N_{j}$) in CR 1b(+). The QmisID represents the backgrounds with a mis-assigned charge. HF e and HF $\mu$ are the backgrounds with fake/non-prompt leptons. Mat. Conv. and Low $m_{\gamma*}$ are the material and virtual photon conversions.

More…

Version 3
Inclusive and differential cross-sections for dilepton $t\bar{t}$ production measured in $\sqrt{s}=13\;$TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 07 (2023) 141, 2023.
Inspire Record 2648096 DOI 10.17182/hepdata.137888

Differential and double-differential distributions of kinematic variables of leptons from decays of top-quark pairs ($t\bar{t}$) are measured using the full LHC Run 2 data sample collected with the ATLAS detector. The data were collected at a $pp$ collision energy of $\sqrt{s}=13$ TeV and correspond to an integrated luminosity of 140 fb$^{-1}$. The measurements use events containing an oppositely charged $e\mu$ pair and $b$-tagged jets. The results are compared with predictions from several Monte Carlo generators. While no prediction is found to be consistent with all distributions, a better agreement with measurements of the lepton $p_{\text{T}}$ distributions is obtained by reweighting the $t\bar{t}$ sample so as to reproduce the top-quark $p_{\text{T}}$ distribution from an NNLO calculation. The inclusive top-quark pair production cross-section is measured as well, both in a fiducial region and in the full phase-space. The total inclusive cross-section is found to be \[ \sigma_{t\bar{t}} = 829 \pm 1\;(\textrm{stat}) \pm 13\;(\textrm{syst}) \pm 8\;(\textrm{lumi}) \pm 2\; (\textrm{beam})\ \textrm{pb}, \] where the uncertainties are due to statistics, systematic effects, the integrated luminosity and the beam energy. This is in excellent agreement with the theoretical expectation.

77 data tables

Definition of the fiducial phase space with the lepton candidate, electron $e$ and muon $\mu$, and jets.

Breakdown of systematic uncertainties in the measured fiducial cross-section. The impact of the top-quark mass on the cross-section is included in the table and not counted in the total uncertainty entry in the paper.

Data bootstrap post unfolding for the fiducial cross-section. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. All the provided numbers originate from pseudo-data, including the 0th entry, and are in units of [fb].

More…

Study of the p$-$p$-$K$^+$ and p$-$p$-$K$^-$ dynamics using the femtoscopy technique

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.A 59 (2023) 298, 2023.
Inspire Record 2648608 DOI 10.17182/hepdata.144831

The interactions of kaons (K) and antikaons ($\mathrm{\overline{K}}$) with few nucleons (N) were studied so far using kaonic atom data and measurements of kaon production and interaction yields in nuclei. Some details of the three-body KNN and $\mathrm{\overline{K}}$NN dynamics are still not well understood, mainly due to the overlap with multi-nucleon interactions in nuclei. An alternative method to probe the dynamics of three-body systems with kaons is to study the final state interaction within triplet of particles emitted in pp collisions at the Large Hadron Collider, which are free from effects due to the presence of bound nucleons. This Letter reports the first femtoscopic study of p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlations measured in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV by the ALICE Collaboration. The analysis shows that the measured p$-$p$-$K$^+$ and p$-$p$-$K$^-$ correlation functions can be interpreted in terms of pairwise interactions in the triplets, indicating that the dynamics of such systems is dominated by the two-body interactions without significant contributions from three-body effects or bound states.

10 data tables

The (p-p)-K$^+$ correlation function obtained using the data-driven approach.

The p-(p-K$^+$) correlation function obtained using the data-driven approach.

Lower-order contributions to the p-p-K$^+$ correlation function obtained using the data-driven approach.

More…

Measurement of inclusive J/$\psi$ pair production cross section in pp collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 108 (2023) 045203, 2023.
Inspire Record 2648593 DOI 10.17182/hepdata.144368

The production cross section of inclusive J/$\psi$ pairs in pp collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV is measured with ALICE. The measurement is performed for J/$\psi$ in the rapidity interval $2.5 < y < 4.0$ and for transverse momentum $p_{\rm T} > 0$. The production cross section of inclusive J/$\psi$ pairs is reported to be $10.3 \pm 2.3 {\rm (stat.)} \pm 1.3 {\rm (syst.)}$ nb in this kinematic interval. The contribution from non-prompt J/$\psi$ (i.e. originated from beauty-hadron decays) to the inclusive sample is evaluated. The results are discussed and compared with data.

1 data table

Inclusive JPSI pair cross section in $2.5 < y < 4.0$.