Study of Electron-Positron Annihilation into pi+pi- at 775 MeV with the Orsay Storage Ring

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Rev.Lett. 20 (1968) 126-129, 1968.
Inspire Record 54563 DOI 10.17182/hepdata.21756

None

1 data table

No description provided.


$\pi^+$ $\pi^-$ production in $e^+$ $e^-$ collisions and $\rho$-$\omega$ interference

Augustin, J.E. ; Benaksas, D. ; Buon, J. ; et al.
(1969) 35, 1969.
Inspire Record 58289 DOI 10.17182/hepdata.37427

None

1 data table

RELATIVE PRODUCTION OF PION PAIRS WITHOUT RADIATIVE CORRECTIONS.


Omega-neutral production by e-plus e-minus annihilation

Augustin, J.E. ; Benaksas, D. ; Buon, J. ; et al.
Phys.Lett.B 28 (1969) 513-516, 1969.
Inspire Record 56682 DOI 10.17182/hepdata.29065

The reaction e + e − → ω o has been measured by detecting the charged pions of the π + π − π o decay mode of the ω o. A partial decay width of ω o in e + e − : Γ e + e − =0.94±0.18 keV is deduced from this result.

1 data table

FITTED, BACKGROUND SUBTRACTED, PEAK OMEGA CROSS SECTION, CORRECTED FOR UNOBSERVED DECAYS, IS 1.82 +- 0.34 MUB. TABULATED ASSUMING CENTRAL ENERGY IS 782.6 MEV. VACUUM POLARIZATION AND RADIATIVE CORRECTIONS APPLIED.


Study of electron-positron annihilation into pi-plus pi-minus on the rho-neutral resonance

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Lett.B 28 (1969) 508-512, 1969.
Inspire Record 56683 DOI 10.17182/hepdata.29076

The electromagnetic form factor of the pion has been determined in the ϱ o resonance region by measuring the absolute cross section of the reaction e + e − → π + π − with the Orsay storage ring. More than 800 pion pairs have been detected. The excitation curve has been fitted with a Breit-Wigner formula which leads to the following values: σ peak = (1.69 ± 0.21) 10 −30 cm 2 ; m ϱ = (770 ± 4) MeV ; Γ ϱ = (111 ± 6) MeV . The partial width of the ϱ o going into e + e − thus obtained is: Γ ϱ → e + e − =(7.36±0.7) keV .

1 data table

No description provided.


Study of the phi meson production with the orsay electron-positron colliding beams

Augustin, J.E. ; Bizot, J.C. ; Buon, J. ; et al.
Phys.Lett.B 28 (1969) 517-520, 1969.
Inspire Record 56680 DOI 10.17182/hepdata.6179

We have measured the e + e − → φ reaction by the K S 0 K L 0 and 3 π decay modes of the φ. We have deduced Γ ( φ → all), Γ ( φ →e + e − ), as well as B ( φ →K S 0 K L 0 ), B ( φ →K + K − ) and B ( φ → π + π − π 0 ).

3 data tables

No description provided.

RESONANCE FIT TO 12 DATA POINTS AROUND PHI FOR EACH CHANNEL GIVES PHI WIDTH OF 4.2 +- 0.9 MEV AND BR(PHI --> PI+ PI0 PI-/PHI --> KL KS) OF 0.667 +- 0.157 (RATHER HIGH).

No description provided.


Single-pion production in pi- p interactions at 2.26 gev/c

Reynolds, B.G. ; Albright, John R. ; Bradley, R.H. ; et al.
Phys.Rev. 184 (1969) 1424-1442, 1969.
Inspire Record 62283 DOI 10.17182/hepdata.26478

We present an analysis of ππN final states obtained from π−p interactions at 2.26 GeV/c. Strong ρ production is present in both final states. In addition, significant nucleon isobar production is observed. We observed the following cross sections: σ(π−π0p)=3.77±0.13 mb, σ(π−π+n)=5.67±0.17 mb, σ(ρ−p)=2.19±0.09 mb, σ(Δ+(1236)π−)=0.30±0.10 mb, σ(N0(1650)π0)=0.49±0.07 mb, σ(ρ0n)=2.89±0.11 mb, σ(Δ−(1236)π+)=0.11±0.06 mb, σ(N+(1470)π−)=0.24±0.06 mb, and σ(N+(1650)π−)=0.45±0.05 mb. The spin-density matrix elements are determined for the ρ0 by interpreting the ρ0 asymmetry as an interference between the resonant P wave and a T=0 S wave. A search for the ε0 in the π+π−n final state failed to yield a direct observation of this effect.

1 data table

No description provided.


Prism plot - a new analysis of multibody final states

Brau, J.E. ; Dao, F.T. ; Hodous, M.F. ; et al.
Phys.Rev.Lett. 27 (1971) 1481-1485, 1971.
Inspire Record 68878 DOI 10.17182/hepdata.21501

We present a new technique for analyzing multibody states. This analysis makes possible the selection of samples of events that contain only resonances, particle correlations, or phase space. A unique feature of this analysis is that every event in the data is assigned to a particular sample. The three-body final state π++p→p+π++π0 is analyzed as an example.

1 data table

No description provided.


K+ p elastic scattering between 2.11 and 2.72 gev/c

Danysz, J.A. ; Penney, B.K. ; Stewart, B.C. ; et al.
Nucl.Phys.B 42 (1972) 29-43, 1972.
Inspire Record 75131 DOI 10.17182/hepdata.32928

Final results are presented of the analysis of the elastic channel in an exposure of 40 000 pictures at each of the four incident K + momenta 2.11, 2.31, 2.5 and 2.72 GeV/ c taken in the 1.5 m British National Hydrogen Bubble Chamber at the 8 GeV/ c proton synchrotron at the Rutherford High Energy Laboratory. Differential cross sections are presented and the results are compared with other published data. A Legendre polynomial analysis requires partial waves up to G wave at all momenta. For the backward peak, visible at each momentum, the slope and the intercept are calculated. A comparison of the forward peak is made with extrapolations from Regge models fitted at higher momenta.

12 data tables

RESULTS DIFFER SLIGHTLY FROM THOSE PREVIOUSLY REPORTED IN J. M. BRUNET ET AL., NP B36, 45 (1972).

No description provided.

No description provided.

More…

K+ p cross-sections between 2.1 and 2.7 gev/c

Brunet, J.M. ; Narjoux, J.L. ; Danysz, J.A. ; et al.
Nucl.Phys.B 36 (1972) 45-57, 1972.
Inspire Record 75386 DOI 10.17182/hepdata.33006

Cross sections are presented for the K + p interacttions with 2, 3, 4 and 5 particles in the final state for incident momenta between 2.1 and 2.7 GeV/c. The results are compared with those from other experiments at nearby momenta.

1 data table

Axis error includes +- 0.0/0.0 contribution (?////).


K- d elastic scattering at 727 mev/c

Wieckowicz, R.P. ; Albright, John R. ; Lannutti, J.E. ;
Nucl.Phys.B 61 (1973) 274-284, 1973.
Inspire Record 83884 DOI 10.17182/hepdata.32494

The differential cross section has been measured using 940 events from the BNL 30-inch deuterium bubble chamber. Events were selected without regard to length of the deuteron, and so wide-angle scatters are included. The data are fitted well by a Glauber model with reasonable assumptions about the parameters.

2 data tables

No description provided.

INTEGRATED CROSS SECTION USING EXPONENTIAL FIT TO FORWARD PEAK (SLOPE = 25.2 +- 1.4 GEV**-2).