Multiplicity fluctuations in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adams, J. ; Adler, C. ; Aggarwal, M.M. ; et al.
Phys.Rev.C 68 (2003) 044905, 2003.
Inspire Record 623047 DOI 10.17182/hepdata.99051

We present the results of charged particle fluctuations measurements in Au + Au collisions at $\sqrt{s_{NN}}=130$ GeV using the STAR detector. Dynamical fluctuations measurements are presented for inclusive charged particle multiplicities as well as for identified charged pions, kaons, and protons. The net charge dynamical fluctuations are found to be large and negative providing clear evidence that positive and negative charged particle production is correlated within the pseudorapidity range investigated. Correlations are smaller than expected based on model-dependent predictions for a resonance gas or a quark gluon gas which undergoes fast hadronization and freeze-out. Qualitative agreement is found with comparable scaled p+p measurements and a HIJING model calculation based on independent particle collisions, although a small deviation from the 1/N scaling dependence expected from this model is observed.

3 data tables

Dynamical fluctuations, $ν_{+−,dyn}$, measured in $|\eta| ≤ 0.5$ as a function of the collision centrality estimated with the total (uncorrected) multiplicity, M, in $|\eta| < 0.75$. Only statistical errors are listed. Systematic errors estimated at $5\%$.

$\langle N\rangle ν_{+−,dyn}$ measured in $|\eta| ≤ 0.5$ vs M (opened circles) compared to the charge conservation limit (dotted line), resonance gas expectation based on ref.[5](solid line); and HIJING calculation (solid squares). Only statistical errors are listed. Systematic errors estimated at $10\%$.

Fluctuations $ν_{+−,dyn}$ for the $6\%$ most central collisions as a function of the range of integrated pseudorapidities. The expected limit due to charge conservation is shown as a dotted line.


Mid-rapidity Lambda and Antilambda production in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 89 (2002) 092301, 2002.
Inspire Record 584141 DOI 10.17182/hepdata.99050

We report the first measurement of strange ($\Lambda$) and anti-strange ($\bar{\Lambda}$) baryon production from $\sqrt{s_{_{NN}}}=130$ GeV Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and transverse mass distributions at mid-rapidity are presented as a function of centrality. The yield of $\Lambda$ and $\bar{\Lambda}$ hyperons is found to be approximately proportional to the number of negative hadrons. The production of $\bar{\Lambda}$ hyperons relative to negative hadrons increases very rapidly with transverse momentum. The magnitude of the increase cannot be described by existing hadronic string fragmentation models.

5 data tables

Transverse mass distributions of $\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.

Transverse mass distributions of $\bar\Lambda$ at mid-rapidity ($|y|<0.5$) for selected centrality bins. Only statistical errors are listed. Combined systematic errors estimated to be $10\%$. The dashed lines are Boltzmann fits. Note that multiplicative factors have been applied to data from the two most central data sets for display.

The mid-rapidity $\bar\Lambda$ ($|y|<0.5$) transverse momentum distribution from the top $5\%$ most central collisions. For comparison the distributions for negative hadrons ($d^{2}N/(2 \pi p_{T})dp_{T}d\eta$, $|\eta|<0.1$) and anti-protons ($|y|<0.1$) for the similar centrality bin are included. Only statistical errors are listed. Statistical errors are less than the size of the data points. Combined systematic errors on hyperons estimated to be $10\%$. Correlated systematic errors for negative hadrons estimated to be $6\%$. Systematic errors on antiprotons are $8\%$ point-to-point and $10\%$ in the overall normalization.

More…

Multiplicity distribution and spectra of negatively charged hadrons in Au + Au collisions at s(NN)**(1/2) = 130-GeV.

The STAR collaboration Adler, C. ; Ahammed, Z. ; Allgower, C. ; et al.
Phys.Rev.Lett. 87 (2001) 112303, 2001.
Inspire Record 557767 DOI 10.17182/hepdata.99049

The minimum bias multiplicity distribution and the transverse momentum and pseudorapidity distributions for central collisions have been measured for negative hadrons (h-) in Au+Au interactions at sqrt(s_nn) = 130 GeV. The multiplicity density at midrapidity for the 5% most central interactions is dNh-/deta|_{eta = 0} = 280 +- 1(stat)+- 20(syst), an increase per participant of 38% relative to ppbar collisions at the same energy. The mean transverse momentum is 0.508 +- 0.012 GeV/c and is larger than in central Pb+Pb collisions at lower energies. The scaling of the h- yield per participant is a strong function of pt. The pseudorapidity distribution is almost constant within |eta|<1.

4 data tables

Normalized multiplicity distribution of $h^{−}$ with $p_{T} > 100$ MeV/$c$ at $|\eta| < 0.5$ in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Systematic error on the vertical scale is estimated to be $10\%$. The systematic error on the horizontal scale is $6\%$ for the entire range of multiplicity. The shaded area is $5\%$ most central collisions, selected by ZDC coincidence. The solid curve is the prediction from the HIJING model.

$h^{−}$ $p_{T}$-spectra for the $5\%$ most central Au+Au collisions at midrapidity ($|\eta| < 0.1$) for several systems. The correlated systematical error is estimated to be below $6\%$. The curves are power-law fits to the data.

ratio of STAR and scaled UA1 $p_{T}$-distributions. The errors given are the errors of the STAR data only and do not include the systematic errors from the scaling of the UA1 data to $130$ GeV (i.e., the shaded region in Fig.2 lower panel). The STAR data is for the $5\%$ most central collisions.

More…