A bubble chamber study of proton-proton interactions at 4 GeV/c Part I—Elastic scattering, single-pion and deuteron production

Ooletti, S. ; Kidd, J. ; Mandelli, L. ; et al.
Nuovo Cim.A 49 (1967) 479-498, 1967.
Inspire Record 1185329 DOI 10.17182/hepdata.981

Elastic scattering, single-pion and deuteron production have been investigated. The cross-section for elastic scattering is σelastic = (13.5±0.3) mb. The angular distribution has been fitted to dσ/d|t|=(dσ/d|t|)0 e −bt in the region of low values oft. The best fit givesb=(6.7±0.5) (GeV/c)−2 and (dσ/d|t|)0=(91±5) mb(GeV/c)−2. The cross-sections for ppπ0, pnπ+ reactions are respectively (2.6±0.3) mb and (9.7±0.4) mb. These reactions are dominated by the (3/2, 3/2) nucleonpion isobar production and by forward backward collimation of the nucleons. The production rates for the isobars ++1238 , +1238 , +1500 have been estimated, taking into account the experimental peripheral behaviour of the interaction. In the pnπ+ reaction they are (50±2)%; (10±3)%; (4±3)%. In the ppπ+ reaction the production of ++1238 is estimated to be (45±10)%. The dπ+ and dπ+π+π- reaction cross-sections are respectively (0.03±0.01) mb, and (0.04±0.01) mb.

3 data tables

No description provided.

No description provided.

No description provided.


Elastic scattering, pion production, and annihilation into pions in antiproton-proton interactions at 5.7 GeV/c

Böckmann, K. ; Nellen, B. ; Paul, E. ; et al.
Nuovo Cim.A 42 (1966) 954-996, 1966.
Inspire Record 1185317 DOI 10.17182/hepdata.1061

An extensive investigation of antiproton-proton interactions at 5.7 GeV/c without strange-particle production was carried out using a hydrogen bubble chamber. Cross-sections for different channels are given and discussed. The reliability of the analysis was checked using artificially generated events. The cross-sections for elastic scattering, for all processes involving annihilation, and for all other inelastic processes are respectively σel=(16.3±0.6)mb,σannlbil=(22.5±2.0)mb, σinel=(24.8±2.0)mb. TheN * 1:38 is present both in the single and multiple pion production channels. For the reaction MediaObjects/11539_2007_Article_BF02720569_f1.jpg a cross-section of (1.05±0.21) mb was obtained. Cross-sections forN * 1238 production in other channels are also given. Some indication of the presence ofI=1/2 isobars was found in the nucleon-pion and the nucleon-two-pion systems. The inelastic nonannihilation reactions were found to be strongly peripheral. The one-pion exchange model including either a form factor or corrections for absorption was applied to the reaction MediaObjects/11539_2007_Article_BF02720569_f2.jpg . Neither version of the model could correctly account for all features of the reaction. The average number of pions in the annihilation was found to be 7.3±0.6. The presence of an asymmetry in the angular distribution of the charged pions was confirmed at this energy; it is due mostly to high-energy pions. The production of ρ and ω mesons was observed in various annihilation channels. Rates of up to 80% for ρ production and up to 15% for ω production were obtained by fitting phase-space and Breit-Wigner curves to the effective-mass distributions of different channels.

5 data tables

No description provided.

More…

Compton scattering cross section on the proton at high momentum transfer.

The Hall A collaboration Danagoulian, A. ; Mamyan, V.H. ; Roedelbronn, M. ; et al.
Phys.Rev.Lett. 98 (2007) 152001, 2007.
Inspire Record 743383 DOI 10.17182/hepdata.31472

Cross-section values for Compton scattering on the proton were measured at 25 kinematic settings over the range s = 5-11 and -t = 2-7 GeV2 with statistical accuracy of a few percent. The scaling power for the s-dependence of the cross section at fixed center of mass angle was found to be 8.0 +/ 0.2, strongly inconsistent with the prediction of perturbative QCD. The observed cross-section values are in fair agreement with the calculations using the handbag mechanism, in which the external photons couple to a single quark.

4 data tables

Cross section of proton Compton Scattering at centre of mass energy squared of 4.82 GeV.

Cross section of proton Compton Scattering at centre of mass energy squared of 6.79 GeV.

Cross section of proton Compton Scattering at centre of mass energy squared of 8.90 GeV.

More…

Precision Measurements of the Anti-proton - Proton Elastic Scattering Cross-section at 90-degrees in the Incident Momentum Range Between 3.5-{GeV}/$c$ and 5.7-{GeV}/$c$

The R704 collaboration Baglin, C. ; Baird, S. ; Bassompierre, G. ; et al.
Phys.Lett.B 225 (1989) 296-300, 1989.
Inspire Record 278760 DOI 10.17182/hepdata.29802

The high antiproton-proton luminosity obtained by using a target system consisting of a hydrogen gas-jet crossing a coasting beam of cooled antiproton circulating in one of the rings of CERN's ISR provides the possibility to measure low cross section reactions with very high precision. We present measurements of the antiproton-proton elastic cross section at 90° CM at incident momenta between 3.5 GeV/ c and 5.7 GeV/ c . The precision of these measurements is much higher than previously reported results. The data show that the cross section of this reaction decreases faster than s −12 over this momentum range.

2 data tables

No description provided.

No description provided.


ELASTIC SCATTERING AND PARTICLE PRODUCTION IN TWO PRONG PI- P INTERACTIONS AT 8-GEV/C

Kitagaki, T. ; Tanaka, S. ; Yuta, H. ; et al.
Phys.Rev.D 26 (1982) 1572-1587, 1982.
Inspire Record 182974 DOI 10.17182/hepdata.23945

Results of a high-statistics study of elastic scattering and meson resonances produced by π−p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for ρ0,−, f0, g0,−, Δ±, Δ0, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for ρ, f, and Δ resonances. The results for ρ0 and f0 resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we present evidence that the ρ0 and f0 production mechanisms are similar. The similarity of the g0 t distribution to that of the ρ0 and f0 suggests a common production mechanism for all three resonances.

5 data tables

No description provided.

No description provided.

SLOPE REFERS TO EXPONENTIAL FIT IN U.

More…

$K^- p$ and $\bar{p} p$ Elastic Scattering at 10.1-{GeV}/$c$

Berglund, A. ; Buran, T. ; Carlson, P.J. ; et al.
Nucl.Phys.B 176 (1980) 346-354, 1980.
Inspire Record 133174 DOI 10.17182/hepdata.34457

The differential cross sections for K − p and p p elastic scattering have been measured over the range of four-momentum transfer squared 0.18<− t <3.3 (GeV/ c ) 2 . The K − p data decrease smoothly as a function of − t , whereas, the p p data shows a break at − t = 0.6 (GeV/ c ) 2 followed by a fast drop to − t ≅ 1.6 (GeV/ c ) 2 where the differential cross section levels off and stays constant out to − t = 3 (GeV/ c ) 2 .

2 data tables

No description provided.

No description provided.


The Slope of Forward Elastic pi+ p Scattering from 4.4-GeV/c to 6.0-GeV/c

Rey, C.A. ; Poirier, J.A. ; Lennox, Arlene J. ; et al.
Phys.Rev.D 15 (1977) 59, 1977.
Inspire Record 109729 DOI 10.17182/hepdata.24605

Angular distributions for π+p→π+p were measured for 13 incident-pion momenta from 4.4 to 6.0 GeV/c and for −t less than ∼0.1 (GeV/c)2. This experiment was performed at the Zero Gradient Synchrotron of Argonne National Laboratory, where a focusing magnetic spectrometer and a scintillation-counter hodoscope were used. In fitting the angular distributions the strong-interaction contribution was parameterized by an exponential form exp(bt); the Coulomb interference was also included. The resulting values of the slope parameter for |t|<∼0.1 (GeV/c)2 are presented for each incident beam momentum.

2 data tables

ENLARGED GRAPHS OF FIGURES SUPPLIED BY J. A. POIRIER.

SLOPE IS FROM FITTING EXP(SLOPE*T) TO FORWARD DIFFERENTIAL CROSS SECTION FOR -T < 0.1 GEV**2 APPROX AFTER ALLOWING FOR COULOMB INTERACTION.


pi- p and K- p Elastic Scattering at 6.2-GeV/c

Buran, T. ; Eide, A. ; Helgaker, P. ; et al.
Nucl.Phys.B 111 (1976) 1-19, 1976.
Inspire Record 108747 DOI 10.17182/hepdata.35657

Data on 6.2 GeV/ c π − p and K − p elastic scattering cross sections are presented in the range 0.3 < − t < 10.7 (GeV/ c ) 2 .

2 data tables

No description provided.

No description provided.


Anti-Proton-Proton Elastic Scattering at 6.2-GeV/c

Buran, T. ; Eide, A. ; Helgaker, P. ; et al.
Nucl.Phys.B 97 (1975) 11, 1975.
Inspire Record 99557 DOI 10.17182/hepdata.35778

Antiproton-proton elastic scattering data at 6.2 GeV/ c in the range 0.3 (GeV/ c ) 2 ⩽ − t ⩽ 10.0 (GeV/ c ) 2 is presented. The experiment, using spark chambers and proportional chambers, was performed at the CERN Proton Synchroton.

1 data table

No description provided.


Elastic Scattering of 10-GeV/c pi+ and K+ Mesons and of 9-GeV/c Protons on Protons

Baglin, C. ; Briandet, P. ; Fleury, P. ; et al.
Nucl.Phys.B 98 (1975) 365-400, 1975.
Inspire Record 98834 DOI 10.17182/hepdata.31908

Angular distributions of π + and K + p elastic scattering have been measured for an incident beam momentum of 10.0 GeV/ c . For π + p elastic scattering almost the complete angular distribution was measured. The angular distribution of proton-proton elastic scattering was measured for an incident momentum of 9.0 GeV/ c in the interval of the four-momentum transfer squared from 0.7 (GeV/ c ) 2 to 5.0 (GeV/ v ) 2 . For π + p elastic scattering the structures at − t = 2.8 (GeV/ c ) 2 and − t = 4.8 (GeV/ c ) 2 are less pronounced than at lower momenta. The cross section for scattering at 90° in the c.m. system is of the order of 1 nb/GeV/ c ) 2 . For K + p elastic scattering is a break in the angular distribution around − t = 3 (GeV/ c ) 2 . The differential cross sections for proton-proton elastic scattering decrease smoothly with increasing momentum transfers.

3 data tables

S=19.667 GEV**2, U=-T-17.867 GEV**2.

S=19.91 GEV**2, U=-T-17.704 GEV**2.

S=18.74 GEV**2.