D ∗± production via e + e − →D ∗± X has been measured at an average CM energy of 34.4 GeV. The D ∗± energy spectrum is hard, with a maximum near χ = 0.6. The size of the D ∗ cross section, R D ∗ = σ( e + e − → D ∗ X ) σ μμ = 2.50 ± 0.64 ± 0.88 (assuming R D ∗0 = R D ∗+ ) indicates that a large fraction of charm quark production yields D ∗ mesons. The D ∗± angular distribution exhibits a forward—backward asymmetry, A = −0.28 ± 0.13. This is consistent with that expected in the standard theory for weak neutral currents and leads to | g A c | = 0.89 ± 0.44 for the axial vector coupling of the charm quark.
ASSUMES EQUAL RATES FOR CHARGED AND NEUTRAL D*'S. ONLY CHARGED ARE DETECTED.
DATA PEAKS AT X=0.6 TO 0.8.
ASYMMETRY MEASUREMENT. THETA IS THE ANGLE BETWEEN THE E- AND THE D*.
Using the data on deep inelastic muon scattering on iron and deuterium the ratio of the nucleon structure functions F 2 N ( Fe )/ F 2 N ( D ) is presented. The observed x -dependence of this ratio is in disagreement with existing theoretical predictions.
RANGE OF Q*2 VARIES WITH X. E.G. AT X=0.05 , 9<Q2<27. AT X=0.65 , 36<Q2<170 GEV**2.
With a segmented total absorption calorimeter of large acceptance, we have measured the total transverse energy spectrum for pp̄ collisions at s 1 2 = 540 GeV up to ΣE T = 130 GeV in the pseudo-rapidity range | η |< 1.5. Using two different algorithms, we have looked for localized depositions of transverse energy (jets). For ΣE T > 40 GeV , the fraction of events with two jets increases with Σ E T ; this event structure is dominant for ΣE T > 100 GeV. We measure the inclusive jet cross section up to E T (jet) = 60 GeV and the two-jets mass distribution to 120 GeV/ c 2 . The measured cross sections are compatible with the predictions of hard scattering models based on QCD.
DATA TAKEN IN 1981 WITH GLOBAL TRANSVERSE ENERGY TRIGGER.
DATA TAKEN IN 1982 WITH LOCAL TRANSVERSE ENERGY TRIGGER.
Transverse momentum distributions of pions, kaons and protons have been measured around 90° in the UA2 detector at the SPS p p collider, at a CM energy of 540 GeV. All the cross sections have increased by more than a factor of 2 over those measured at ISR energies and exhibit a flatter behaviour with respect to transverse momentum.
No description provided.
The deuteron structure function F 2 d has been measured in 280 GeV μ + d interactions. Existing measurements of F 2 p , made with the same apparatus, are used to calculate F 2 p − F 2 n and F 2 n F 2 p . The ratio F 2 n F 2 p has a similar x dependence to that of earlier measurements at lower Q 2 .
No description provided.
No description provided.
No description provided.
None
No description provided.
None
Axis error includes +- 6/6 contribution (THE NUMBER OF NEUTRAL STARS WAS CORRECTED FOR ACCIDENTAL STARS WITHOUT FORMER INTERACTIONS AND FOR STARS PRODUCED BY KL MESONS, THE LAMBDA AND KS PARTICLES YIELD BEING NEGLECTEDTHE MOMENTUM OF NEUTRON IN THE STAR WAS TAKEN OF ONE AND A HALF OF TOTAL MOMENTUM OF CHARGED PARTICLES IN THE STAR).
No description provided.
None
CESIUM-IODINE DESIGNATED NUCLEUS.
CESIUM-IODINE DESIGNATED NUCLEUS.
CESIUM-IODINE DESIGNATED NUCLEUS.
None
No description provided.
No description provided.
No description provided.
We have carried out a systematic study of the coherent dissociation of pions into 3 pions using nuclear targets. The experiment was performed at Fermilab using a high resolution forward spectrometer. Data were taken with carbon, copper and lead targets at an incident momentum of 202.5 GeV/c. Results are presented on momentum transfers, 3-pion masses, and on the nuclearA-dependence of the production cross section.
No description provided.
No description provided.
No description provided.