Preliminary results on the determination of the position and shape of the ϱ-meson resonance with electron-positron colliding beams are presented.
Measured value of the pion form factor
None
Measured value of the pion form factor
The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.
The fraction of inclusive $\pi^0$ yield which satisfied the BBC trigger condition.
The neutral pion production cross section at $\sqrt{s}$ = 62.4 GeV as a function of $p_T$ and the results of next-to-leading order (NLO) and next-to-leading logarithmic accuracy (NLL) perturbative Quantum Chromodynamics (pQCD) calculations for the theory scale $\mu$ = $p_T$.
The parameter $n$ obtained from the ratio of invariant cross section at $\sqrt{s}$ = 62.4 GeV and $\sqrt{s}$ = 200GeV, at each $x_T$ of $\sqrt{s}$ = 62.4 GeV data; error bars show the statistical and systematic uncertainties of the $\sqrt{s}$ = 62.4 GeV and $\sqrt{s}$ = 200 GeV data.
New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.
Assorted-$p_T$ correlation functions (0.65 < $p_{T,ref}$ < 2.5 GeV/$c$) for charged hadrons of 0.5 < $p_T$ < 0.7 GeV/$c$ and 1.0 < $p_T$ < 1.5 obtained in Au+Au collisions at $\sqrt{S_{NN}}$ = 62.4 GeV.
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via cumulants method
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via correlation function method
We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p) collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the correlations which we quantify in terms of the conditional yield and angular width of away side partners. The kinematic region studied here samples partons in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions.
Azimuthal angle correlation functions. Note that the y-axis is zero-suppressed on the middle and bottom panels. In the additonal resource, the Gaussian widths from the fits and the signal to background ration integrated over $\pi$ - 1 < $\Delta\phi$ < $\pi$ + 1 are shown.
Conditional yields (CY) shown as a function of trigger particle pseudorapitidy for trigger particle $p_T$ from 2.5 to 4.0 and associated particle $p_T$ from 1.0 to 2.5 GeV/$c$. The additional $\pm$0.037 systematic error on the mid-rapidity $p+p$ point is from jet yield extraction. There is a 1% point-by-point systematical error on all points except central arm triggers. There is also a 10% systematic error for all data points due to the determination of associated particle efficiency. For $p + p$ point, forward and backward trigger are combined, so the results are identical.
$I_{dAu}$ vs. $p_T^{assoc}$ for different centrality, $p_T^{trig}$ and $\eta^{trig}$ bins.
Measurements of double-helicity asymmetries for inclusive hadron production in polarized p+p collisions are sensitive to helicity--dependent parton distribution functions, in particular to the gluon helicity distribution, Delta(g). This study focuses on the extraction of the double-helicity asymmetry in eta production: polarized p+p --> eta + X, the eta cross section, and the eta/pi^0 cross section ratio. The cross section and ratio measurements provide essential input for the extraction of fragmentation functions that are needed to access the helicity-dependent parton distribution functions.
Cross section for midrapidity inclusive of $\eta$ productions at $\sqrt{s}$ = 200 GeV as a function of $p_T$ and its comparison to NLO pQCD calculations at three different scales $\mu$. The error bars shown are the statistical and systematic uncertainties added in quadrature. Note that the fragmentation functions used in the calculations are partially constrained by this data.
Cross section ratio for the midrapidity production of inclusive $\eta$ to $\pi^0$ mesons at $\sqrt{s}$ = 200 GeV as a function of $p_T$. The error bars show the statistical and systematic uncertainties added in quadrature. The solid curve shows the ratio of the NLO pQCD calculations shown in Fig. 3 and the corresponding one for the $\pi^0$. The dashed curve shows the result of a PYTHIA Monte-Carlo simulation.
Double helicity asymmetry for midrapidity inclusive $\eta$ production from the combined 2005 and 2006 data at $\sqrt{s}$ = 200 GeV as a function of $p_T$. An additional 4.8% systematic uncertainty in the beam polarizations is not shown.
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p+p collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 < p_T < 4.5 GeV/c are consistent with perturbative QCD calculations at next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with recent global parameterizations disfavoring large gluon polarization.
Cross section of midrapidity charged-hadron production from $p$ + $p$ collisions at $\sqrt{s}$ = 62.4 GeV as a function of $p_T$ for positive and negative hadrons.
Double-helicity asymmetries and the statistical uncertainties as a function of $p_T$ for positive and negative inclusive charged hadrons from $p$ + $p$ collisions at $\sqrt{s}$ = 62.4 GeV.
New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 5% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 10% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 10% to 20% centrality $Au+Au$.
Azimuthal angle (Delta phi) correlations are presented for a broad range of transverse momentum (0.4 < pT < 10 GeV/c) and centrality (0-92%) selections for charged hadrons from di-jets in Au+Au collisions at sqrt(s_NN) = 200 GeV. With increasing pT, the away-side Delta phi distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons to p+p data suggest that the away-side distribution can be divided into a partially suppressed head region centered at Delta phi ~ \pi, and an enhanced shoulder region centered at Delta phi ~ \pi \pm 1:1. The pT spectrum for the associated hadrons in the head region softens toward central collisions. The spectral slope for the shoulder region is independent of centrality and trigger pT . The properties of the near-side distributions are also modified relative to those in p + p collisions, reflected by the broadening of the jet shape in Delta phi and Delta eta, and an enhancement of the per-trigger yield. However, these modifications seem to be limited to pT < 4 GeV/c, above which both the dihadron pair shape and per-trigger yield become similar to p + p collisions. These observations suggest that both the away- and near-side distributions contain a jet fragmentation component which dominates for pT \ge 5GeV and a medium-induced component which is important for pT \le 4 GeV/c. We also quantify the role of jets at intermediate and low pT through the yield of jet-induced pairs in comparison to binary scaled p + p pair yield. The yield of jet-induced pairs is suppressed at high pair proxy energy (sum of the pT magnitudes of the two hadrons) and is enhanced at low pair proxy energy. The former is consistent with jet quenching/ the latter is consistent with the enhancement of soft hadron pairs due to transport of lost energy to lower pT.
Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p^a_T \otimes p^b_T$), arranged by increasing pair proxy energy (sum of $p^a_T$ and $p^b_T$), in p + p collisions for 5-10 $\otimes$ 2-3, 4-5 $\otimes$ 4-5, 5-10 $\otimes$ 3-5, and 5-10 $\otimes$ 5-10 GeV/c.
Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p^a_T \otimes p^b_T$), arranged by increasing pair proxy energy (sum of $p^a_T$ and $p^b_T$), in p + p collisions for 3-4 $\otimes$ 0.4-1, 3-4 $\otimes$ 1-2, 3-4 $\otimes$ 2-3, and 3-4 $\otimes$ 3-4 GeV/c.
Per-trigger yield versus $\Delta\phi$ for various trigger and partner $p_T$ ($p^a_T \otimes p^b_T$), arranged by increasing pair proxy energy (sum of $p^a_T$ and $p^b_T$), in Au + Au collisions for 3-4 $\otimes$ 0.4-1, 3-4 $\otimes$ 1-2, 3-4 $\otimes$ 2-3, and 3-4 $\otimes$ 3-4 GeV/c.
We report the measurement of direct photons at midrapidity in Au+Au collisions at sqrt{s_NN} = 200 GeV. The direct photon signal was extracted for the transverse-momentum range of 4 GeV/c < p_T < 22 GeV/c, using a statistical method to subtract decay photons from the inclusive-photon sample. The direct-photon nuclear-modification factor R_AA was calculated as a function of p_T for different Au+Au collision centralities using the measured p+p direct-photon spectrum and compared to theoretical predictions. R_AA was found to be consistent with unity for all centralities over the entire measured p_T range. Theoretical models that account for modifications of initial-direct-photon production due to modified-parton-distribution functions in Au and the different isospin composition of the nuclei, predict a modest change of R_AA from unity and are consistent with the data. Models with compensating effects of the quark-gluon plasma on high-energy photons, such as suppression of jet-fragmentation photons and induced-photon bremsstrahlung from partons traversing the medium, are also consistent with this measurement.
Direct photon spectra for all centrality selections in Au+Au.
Direct photon nuclear modification factor ($R_{AA}$)