This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distrib
No description provided.
No description provided.
No description provided.
In the analysis of the reactione+e−→e+e−KS0Ks0 clear evidence for exclusive γγ→f2′ resonance production is observed. The productΓγγ ·B(f2′→K\(\bar K\)) is measured to be 0.10−0.03−0.02+0.04+0.03 keV independent of ana priori assumption on the helicity structure. Our data are consistent with a pure helicity 2 contribution and we derive an upper limit for the ratioΓγγ(0)/Γγγ. The absence of events in the mass region around 1.3 GeV clearly proves destructivef2−a2 interference and allows to measure the relative phases betweenf2,a2 andf2′. Upper limits on the production of the glueball candidate statesf2(1720) andX(2230) as well as theKS0KS0-continuum are given.
Data read from graph.
We present an experimental study of jetproduction in photon-photon interactions for 0.1≲Q2≲120 GeV2 and jet transverse momentum,pT, up to 5 GeV/c. At alQ2, the data show a highpT, tail, characteristic of a point-like interaction. The jet production cross-section approaches the quarkparton model (QPM) expectation as either jetpT orQ2 increases. Overall, the data are well described in both total cross-section and event topology by the sum of a vector-dominance model and a point-like interaction, represented by the QPM.
No description provided.
We report on the exclusive production of π, K and proton pairs from photon-photon interactions at momentum transfers | t |⩾1 GeV 2 . Using the PLUTO detector at the e + e − storage ring PETRA, we have observed 15 events in an integrated luminosity of 41.7 pb −1 . The data lie far below the expectations for point-like hadrons, and are in reasonable agreement with the QCD-based predictions of Brodsky and Lepage.
THIS METHOD OF ANALYSIS OF THE OBSERVED RATIO OF HADRON TO MUON PAIRS, IS TIED TO THE SPECIFIC DETECTOR ACCEPTANCE, BUT HAS THE ADVANTAGE OF BEING VIRTUALLY INDEPENDENT OF THE HADRON MASSES.
SEE COMMENT IN PREVIOUS TABLE.
THIS METHOD OF ANALYSIS OF THE CROSS SECTION AT 90 DEG IN THE CM AS A FUNCTION OF PCM IS MORE EASILY COMPARED WITH THEORETICAL PREDICTIONS BUT MORE DEPENDENT ON THE SPECIFIC HADRON MASSES.
We present new high statistics data on hadron production in photon-photon reactions. The data are analyzed in terms of an electron-photon scattering formalism. The dependence of the total cross section of Q 2 , the four-momentum transfer squared of the scattered electron, and on the mass W of the hadronic system is investigated. The data are compared to predictions from Vector-Meson Dominance and the quark model.
No description provided.
DEPENDENCE ON VISIBLE HADRONIC INVARIANT MASS.
Data read from graph.
A comparison is made of the low-mass three-meson systems (πππ), (Kππ), (π K K ) and ( K K K ) diffractively produced in the reaction meson + proton → three mesons + proton. Several striking similarities and a few important differences are observed: (i) the reactions are consistent with the assumption that the three mesons decay entirely into a 0 − meson and a 0 + , 1 − or 2 + resonance; (ii) the three-meson mass spectra have a peak ≈ 250 MeV above the effective threshold M eff of the dominant decay mode and then fall off approximately as (mass) −3 ;(iii) the average spin 〈 J 〉 = 0.55 + 1.1 Q eff , where Q eff = M - M eff ; (iv) the average orbital angular momentum 〈 l 〉 increases according to 〈 l 〉 = 0.75 Q eff ; (v) the three-meson states are produced dominantly in unnatural spin-parity states and no evidence for their being resonant is found; (vi) the only natural spin-parity states found are the well-established 2 + resonances A 2 and K ∗ (1420); they have similar properties to the non-resonant unnatural parity states except for a dip at t = 0 in the dσ/d t distributions; (vii) both the unnatural and natural spin-parity states are produced mostly by an exchange of natural parity; (viii) there is evidence for two types of production mechanism with different polarization properties, one approximately conserving helicity in the t -channel and the other in the s -channel.
No description provided.