Multiple emission of intermediate-mass fragments has been studied for the collisions p + Au at 2.16, 3.6 and 8.1 GeV with the FASA setup. The mean IMF multiplicities for events with at least one IMF a
No description provided.
We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.
The measured W and Z0 cross sections used to compute the ratio.
The measured ratios of W+-/Z0 cross sections, corrected for the branching ratios BR(W-->e-nue)=0.1073+-0.0025 and BR(Z0-->E+E-)=0.033632+-0.000059 (PDG 2000). The error given is the total error, but note that the 4.3pct error in the luminosity cancels completely in the ratio.
We present the first comprehensive tests of light-lepton universality in the angular distributions of semileptonic $B^0$-meson decays to charged spin-1 charmed mesons. We measure five angular-asymmetry observables as functions of the decay recoil that are sensitive to lepton-universality-violating contributions. We use events where one neutral $B$ is fully reconstructed in $\Upsilon\left(4S\right)\to{}B \overline{B}$ decays in data corresponding to $189~\mathrm{fb}^{-1}$ integrated luminosity from electron-positron collisions collected with the Belle II detector. We find no significant deviation from the standard model expectations.
Transverse momentum (p^e_T) spectra of electrons from semileptonic weak decays of heavy flavor mesons in the range of 0.3 < p^e_T < 9.0 GeV/c have been measured at mid-rapidity (|eta| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The nuclear modification factor R_AA with respect to p+p collisions indicates substantial energy loss of heavy quarks in the produced medium. In addition, the azimuthal anisotropy parameter v_2 has been measured for 0.3 < p^e_T < 5.0 GeV/c in Au+Au collisions. Comparisons of R_AA and v_2 are made to various model calculations.
The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.
Inclusive momentum spectra and multiplicity distributions of charged particles measured with BESII detector at center of mass energies of 2.2,2.6,3.0,3.2,4.6 and 4.8 GeV are presented. Values of the second binomial moment, $R_2$, obtained from the multiplicity distributions are reported. These results are compared with both experimental data from high energy $e^+e^-$, $ep$ and $p\bar{p}$ experiments and QCD calculations.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.2 GeV.. Errors are statistical and systematic added in quadrature.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 2.6 GeV.. Errors are statistical and systematic added in quadrature.
Measured xi =-ln(2p/sqrt(s)) spectra for centre of mass energy 3.0 GeV.. Errors are statistical and systematic added in quadrature.
Measurements have been made of inclusive 525 GeV π− interactions in emulsion. The results are compared to proton-emulsion and lower energy pion-emulsion data. Average multiplicities of relativistic shower particles increase with increasing energy, although with a somewhat steeper slope above 60 GeV than at lower energies. The ratio 〈ns〉p/〈ns〉π∼1.1 over the energy range 60–525 GeV. The ratio of the dispersion in the multiplicity distribution to the average multiplicity is the same for proton and pion collisions in emulsion, and is independent of projectile energy. The shape of the shower particle multiplicity distribution does not vary significantly with energy, and KNO scaling appears to hold over the energy range 60–525 GeV. The shower particle pseudorapidity distributions are independent of the beam energy in the target and projectile fragmentation regions, and both the pseudorapidity and multiplicity distributions agree reasonably well with the fritiof model predictions for 525 GeV pions. The dependence of the shower particle multiplicity 〈ns〉 on the number of heavy tracks Nh appraoches saturation as the total shower particle energy becomes a significant fraction of √s , and the pseudorapidity distributions shift toward smaller 〈η〉 with increasing numbers of grey and black tracks at 525 GeV. Neither the average number 〈Nh〉 nor the multiplicity distributions of the heavily ionizing tracks vary significantly with energy, and the normalized angular distributions of grey and black tracks are independent of the type of projectile or projectile energy.
NUCLEUS means average nuclei of BR-2 emulsion.
NUCLEUS means average nuclei of BR-2 emulsion.
NUCLEUS means average nuclei of BR-2 emulsion.
During the initial data run with the High Resolution Spectrometer (HRS) at SLAC PEP, an integrated luminosity of 19.6 pb−1 at a center-of-mass energy of 29 GeV was accumulated. The data on Bhabha scattering and muon pair production are compared with the predictions of QED and the standard model of electroweak interactions. The measured forward-backward charge asymmetry in the angular distribution of muon pairs is -8.4%±4.3%. A comparison between the data and theoretical predictions places limits on alternative descriptions of leptons and their interactions. The existence of heavy electronlike or photonlike objects that alter the structure of the QED vertices or modify the propagator are studied in terms of the QED cutoff parameters. The Bhabha-scattering results give a lower limit on a massive photon and upper limits on the effective size of the electron of Λ+>121 GeV and Λ−>118 GeV at the 95% confidence level. Muon pair production yields Λ+>172 GeV and Λ−>172 GeV. If electrons have substructure, the magnitude and character of the couplings of the leptonic constituents affects the Bhabha-scattering angular distributions to such an extent that limits on the order of a TeV can be extracted on the effective interaction length of the components. For models in which the constituents interact with vector couplings of strength g24π∼1, the energy scale ΛVV for the contact interaction is measured to be greater than 1419.0 GeV at the 95% confidence level. We set limits on the production of supersymmetric scalar electrons through s-channel single-photon annihilation and t-channel inelastic scattering. Using events with two noncollinear electrons and no other charged or observed neutral particles in the final state, we see one event which is consistent with a simple supersymmetric model but which is also consistent with QED. This allows us to exclude the scalar electron to 95% confidence level in the mass range 1.8 to 14.2 GeV/c2.
Comparison of Bhabhas with QED.
Muon angular distributions.
Forward-backward asymmetry from full angular range.
In this paper, results are presented from a study of the hadronic final states in e+e− annihilation at 29 GeV. The data were obtained with the High Resolution Spectrometer (HRS) at the SLAC PEP e+e− colliding-beam facility. The results are based on 6342 selected events corresponding to an integrated luminosity of 19.6 pb−1. The distributions of the events in sphericity (S), thrust (T), and aplanarity (A) are given and compared to other e+e− data in the same energy range. We measure 〈S〉=0.130±0.003±0.010 and 〈1-T〉=0.100±0.002. The sphericity distribution is compared to sphericity measurements made for beam jets in hadronic collisions as well as jets studied in neutrino scattering. The data sample is further reduced to 4371 events with the two-jet selections, S≤0.25 and A≤0.1. The single-particle distributions in the longitudinal and transverse directions are given. For low values of the momentum fraction (z=2p/W), the invariant distribution shows a maximum at z∼0.06, consistent with a QCD expectation. The data at high Feynman x (xF) show distribution consistent with being dominated by a (1-xf)2 variation for the leading quark-meson transition. The rapidity distribution shows a shallow central minimum with a height (1/NevdNh/dY‖Y=0=2.3±0.02±0.07. The mean charged multiplicity is measured to be 〈nch〉=13.1±0.05±0.6. The mean transverse momentum relative to the thrust axis 〈pT〉 rises as a function of z to a value of 0.70±0.02 GeV/c for z≳0.3. The distributions are compared to those measured in other reactions.
New values supplied 6.7.87 by M.Derrick.
No description provided.
New values supplied 6.7.87 by M. Derrick.
An investigation has been performed of some properties of Σ(1660) produced in the reaction K−p→Σ+(1660)π− at 2.87 GeV/c incident K− momentum. The decay modes observed for this state include Λ(1405)π and Σπ. The spin and parity are measured to be JP=32−. The differential cross section of the Λ(1405)π decay mode is sharply peaked in the forward direction, falling exponentially with a slope of 5.6 ± 0.7 (GeV/c)−2, while the slope for the Σ0π+ decay mode is 2.1 ± 0.4 (GeV/c)−2. The difference in the ratio of backward to total events for the two decay modes also suggests that two Σ(1660)'s exist.
No description provided.
No description provided.