None
No description provided.
None
No description provided.
Measurements of the differential cross section for the process γ+p→π0+p have been made at three pion center-of-mass angles: 60°, 90°, and 120°. Values were obtained at intervals of 0.05 BeV (incident laboratory photon energy, k) from approximately 0.6 to 1.2 BeV. Most of the data were obtained by detecting only the recoil protons with a large, wedge-shaped, single-focusing magnetic spectrometer and associated equipment. For θ′π0=60° and k≤0.94 BeV the π0 decays were also required, the decay photons being detected by a lead glass total absorption counter. Although the experimental resolution was considerably narrower than that of most of the previous experiments, its averaging effect was still appreciable in certain regions. Using a six-parameter fit, the data at each angle were unfolded in an effort to eliminate the effects of resolution and to obtain the true cross sections as a function of energy. The results compare reasonably well with those of previous experiments once differences in resolutions and systematic errors are taken into account. The results did not agree with the predictions of a simple resonance model with the resonance quantum numbers suggested by Peierls. The positions and widths of the two cross-section peaks in this energy region are quite similar to those observed in π−p scattering.
No description provided.
A magnetic spectrometer and counter telescope system was used to detect positive pions photoproduced singly in a liquid hydrogen target. Measurements of the differential cross section were made at mean laboratory photon energies, k = 1.1, 1.2, 1.3, and 1.4 GeV and in the angular range from 5° to 165 ° in the center-of-momentum system of the pion. The shape of the angular distribution of the differential cross sections at each value of k is very similar to that of the previously measured distribution at k = 1.0 GeV. The angular distributions were integrated to give the total cross sections. The third pion-nucleon "resonance" peak is seen to be very close to k = 1.0 GeV. A leveling off of the total cross section at k = 1.4 GeV may be due to the fourth "resonance". The accurate small angle data at k = 1.1 and 1.2 GeV permitted a reasonable extrapolation of the differential cross section to the pion-nucleon pole. The value of the pion-nucleon coupling constant, f, was extracted from this extrapolation. The result was f^2 = 0.078 ± 0.011.
No description provided.
No description provided.
No description provided.
The differential cross-section for π+ photoproduction from hydrogen by γ-rays of laboratory energy 187 MeV has been measured at four angles. Two identical counter systems, designed to detect low energy pions unambiguosly in intense electron and γ-ray backgrounds, were used in conjunction with a cylindrical liquid hydrogen target, of very low boil-off rate. The cross-sections at laboratory angles of 39.2°, 66.7°, 111.6°, and 134° are 7.49±0.47, 8.10±0.57, 8.36±0.61 and 9.54±0.61, ·10−30cm2/sr, respectively, where the assigned errors refer only to the relative values. The absolute cross-sections are in substantial agreement with the dispersion theory and confirm the front to back asymmetry.
No description provided.
None
No description provided.
No description provided.
No description provided.
The measurements on the polarization of the recoil protons from the process γ+p→π0+p have been extended to higher γ-ray energies, at 90° in the center-of-mass system. We have found at 910 Mev a polarization, P=−0.45±0.07; at 800 Mev, P=−0.42±0.10. The rather high values of P agree with the hypothesis that the neutral photoproduction in the 500-1000 Mev range can be described by the well-known three resonant states, and strongly indicate that the second and third resonance have opposite parity. The probable quantum numbers are: T=12, J=32, D pion wave for the second resonance; T=12, J=52, F wave for the third resonance.
No description provided.
The target asymmetry T, recoil asymmetry P, and beam-target double polarization observable H were determined in exclusive $\pi ^0$ and $\eta $ photoproduction off quasi-free protons and, for the first time, off quasi-free neutrons. The experiment was performed at the electron stretcher accelerator ELSA in Bonn, Germany, with the Crystal Barrel/TAPS detector setup, using a linearly polarized photon beam and a transversely polarized deuterated butanol target. Effects from the Fermi motion of the nucleons within deuterium were removed by a full kinematic reconstruction of the final state invariant mass. A comparison of the data obtained on the proton and on the neutron provides new insight into the isospin structure of the electromagnetic excitation of the nucleon. Earlier measurements of polarization observables in the $\gamma p \rightarrow \pi ^0 p$ and $\gamma p \rightarrow \eta p$ reactions are confirmed. The data obtained on the neutron are of particular relevance for clarifying the origin of the narrow structure in the $\eta n$ system at $W = 1.68\ \textrm{GeV}$. A comparison with recent partial wave analyses favors the interpretation of this structure as arising from interference of the $S_{11}(1535)$ and $S_{11}(1650)$ resonances within the $S_{11}$-partial wave.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \pi^0 p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma n \to \pi^0 n$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.
Target asymmetry T, recoil asymmetry P, and polarization observable H for $\gamma p \to \eta p$ as a function of the polar center-of-mass angle for bins at the given centroid c.m. energies.