Date

Differential cross sections for the reactions gamma p-> p eta and gamma p -> p eta-prime

The CLAS collaboration Williams, M. ; Krahn, Z. ; Applegate, D. ; et al.
Phys.Rev.C 80 (2009) 045213, 2009.
Inspire Record 830257 DOI 10.17182/hepdata.52983

High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

104 data tables

Differential cross section for the W range 1.68 to 1.69 GeV.

Differential cross section for the W range 1.69 to 1.70 GeV.

Differential cross section for the W range 1.70 to 1.71 GeV.

More…

Photoproduction of $\eta$ and $\eta\prime$ Mesons off Protons

The CBELSA/TAPS collaboration Crede, V. ; McVeigh, A. ; Anisovich, A.V. ; et al.
Phys.Rev.C 80 (2009) 055202, 2009.
Inspire Record 836340 DOI 10.17182/hepdata.53229

Total and differential cross sections for $\eta$ and $\eta ^\prime$ photoproduction off the proton have been determined with the CBELSA/TAPS detector for photon energies between 0.85 and 2.55 GeV. The $\eta$ mesons are detected in their two neutral decay modes, $\eta\to\gamma\gamma$ and $\eta\to 3\pi^0\to 6\gamma$, and for the first time, cover the full angular range in $\rm cos \theta_{cm}$ of the $\eta$ meson. These new $\eta$ photoproduction data are consistent with the earlier CB-ELSA results. The $\eta ^\prime$ mesons are observed in their neutral decay to $\pi^0\pi^0\eta\to 6\gamma$ and also extend the coverage in angular range.

56 data tables

Differential cross section for ETA production at incident photon energy 0.850 to 0.900 GeV.

Differential cross section for ETA production at incident photon energy 0.900 to 0.950 GeV.

Differential cross section for ETA production at incident photon energy 0.950 to 1.000 GeV.

More…

Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 9.2 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 024911, 2010.
Inspire Record 831944 DOI 10.17182/hepdata.93265

We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at $\sqrt{s_{NN}}$ = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar $\sqrt{s_{NN}}$ from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, , and particle ratios are discussed. These results also demonstrate the readiness of the STAR detector to undertake the proposed QCD critical point search and the exploration of the QCD phase diagram at RHIC.

27 data tables

Second order event plane resolution measured in the TPC as a function of collision centrality for.

Efficiency × acceptance for reconstructed pions, kaons, and protons in the TPC as a function of p_T at midrapidity.

Percentage of pion background contribution estimated from HIJING+GEANT as a function of p_T at midrapidity.

More…

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 251601, 2009.
Inspire Record 830686 DOI 10.17182/hepdata.98578

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a \P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.

3 data tables

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\Psi_{RP})\rangle$ in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV calculated using Eq. 2. The thick solid (Au+Au) and dashed (Cu+Cu) lines represent HIJING calculations of the contributions from 3-particle correlations. Shaded bands represent uncertainty from the measurement of $v_{2}$. Collision centrality increases from left to right.

Dependence of $\langle cos(\phi_{\alpha}+\phi_{\beta}−2\Psi_{RP})\rangle$ on $\frac{1}{2}(p_{t,\alpha}+p_{t,\beta})$ calculated using no upper cut on particles’ $p_{t}$. Shaded bands represent $v_{2}$ uncertainty.

$\langle cos(\phi_{\alpha} + \phi_{\beta} − 2\Psi_{RP})\rangle$ results from 200 GeV Au+Au collisions are compared to calculations with event generators HIJING (with and without an “elliptic flow afterburner”),UrQMD (connected by dashed lines), and MEVSIM. Thick lines represent HIJING reaction-plane-independent background.


Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 054908, 2010.
Inspire Record 830676 DOI 10.17182/hepdata.98577

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in non-central collisions. To study this effect, we investigate a three particle mixed harmonics azimuthal correlator which is a \P-even observable, but directly sensitive to the charge separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 and 62~GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators, and discuss in detail possible contributions from other effects that are not related to parity violation.

19 data tables

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, before corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Reversed Full Field.

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, before corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Full Field.

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\phi_{c})\rangle$ as a function of reference multiplicity for different charge combinations, after corrections for acceptance effects. In the legend the signs indicate the charge of particles $\alpha$, $\beta$, and c. The results shown are for Au+Au collisions at 200 GeV obtained in the Reversed Full Field.

More…

Version 2
Long range rapidity correlations and jet production in high energy nuclear collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 064912, 2009.
Inspire Record 830070 DOI 10.17182/hepdata.101345

The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation \dphino, in d+Au and central Au+Au collisions at $\rts = 200$ GeV. Significant correlated yield for pairs with large longitudinal separation \deta is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in \detano$\times$\dphi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in \dphi and \textcolor{black}{depends only weakly on} $\deta$, the 'ridge'. Using two systematically independent analyses, \textcolor{black}{finite ridge yield} is found to persist for trigger $\pt > 6$ \GeVc, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range ($2 < \pt < 4 \GeVc$).

7 data tables

FIG. $2: \quad Y_{\text {slice }}(\Delta \eta ; \delta=0.3)$ (Eq. 5 ) for central Au+Au collisions, $2 \mathrm{GeV} / \mathrm{c}<p_{t}^{a s s o c}<p_{t}^{t r i g}$, and various $p_{t}^{t r i g}$ vs. $\Delta \eta$; the shaded bands represents the systematic uncertainties due to $v_{2}$ (not shown for $6<p_{t}^{\text {trig }}<10 \mathrm{GeV} / \mathrm{c}$ ). The solid and dashed lines represents a constant or linear fit to $1<|\Delta \eta|$ $<1.8$; only shown for $3<p_{t}^{t r i g}<4 \mathrm{GeV} / c$ (see text). Some data points are displaced horizontally for clarity.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

More…

Differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$

The CLAS collaboration Williams, M. ; Applegate, D. ; Bellis, M. ; et al.
Phys.Rev.C 80 (2009) 065208, 2009.
Inspire Record 829180 DOI 10.17182/hepdata.52667

High-statistics differential cross sections and spin density matrix elements for the reaction $\gamma p \to p \omega$ have been measured using the CLAS at Jefferson Lab for center-of-mass (CM) energies from threshold up to 2.84 GeV. Results are reported in 112 10-MeV wide CM energy bins, each subdivided into $\cos{\theta_{CM}^{\omega}}$ bins of width 0.1. These are the most precise and extensive $\omega$ photoproduction measurements to date. A number of prominent structures are clearly present in the data. Many of these have not previously been observed due to limited statistics in earlier measurements.

221 data tables

Differential cross section for the W range 1.72 to 1.73 GeV.

Differential cross section for the W range 1.73 to 1.74 GeV.

Differential cross section for the W range 1.74 to 1.75 GeV.

More…

Neutral Pion Production in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 044905, 2009.
Inspire Record 825863 DOI 10.17182/hepdata.96845

The results of mid-rapidity ($0 < y < 0.8$) neutral pion spectra over an extended transverse momentum range ($1 < p_T < 12$ GeV/$c$) in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions, measured by the STAR experiment, are presented. The neutral pions are reconstructed from photons measured either by the STAR Barrel Electro-Magnetic Calorimeter (BEMC) or by the Time Projection Chamber (TPC) via tracking of conversion electron-positron pairs. Our measurements are compared to previously published $\pi^{\pm}$ and $\pi^0$ results. The nuclear modification factors $R_{\mathrm{CP}}$ and $R_{\mathrm{AA}}$ of $\pi^0$ are also presented as a function of $p_T$ . In the most central Au+Au collisions, the binary collision scaled $\pi^0$ yield at high $p_T$ is suppressed by a factor of about 5 compared to the expectation from the yield of p+p collisions. Such a large suppression is in agreement with previous observations for light quark mesons and is consistent with the scenario that partons suffer considerable energy loss in the dense medium formed in central nucleus-nucleus collisions at RHIC.

20 data tables

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-TPC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

The diphoton invariant mass distributions using the EMC-EMC method in 0-20% Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV.

More…

Neutral Pion Electroproduction in the Resonance Region at High $Q^2$

Villano, A.N. ; Stoler, P. ; Bosted, P.E. ; et al.
Phys.Rev.C 80 (2009) 035203, 2009.
Inspire Record 823260 DOI 10.17182/hepdata.54189

The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\gamma^{\ast}p \to p^{\prime}\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\ast}$. It is found that the rapid fall off of the $\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances

125 data tables

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.9 for the small SOS spectrometer.

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.7 for the small SOS spectrometer.

Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.5 for the small SOS spectrometer.

More…

Two-Pion Production in Proton-Proton Collisions: Experimental Total Cross Sections and their Isospin Decomposition

Skorodko, T. ; Bashkanov, M. ; Bogoslawsky, D. ; et al.
Phys.Lett.B 679 (2009) 30-35, 2009.
Inspire Record 823365 DOI 10.17182/hepdata.54188

The two-pion production in pp-collisions has been investigated at CELSIUS in exclusive measurements from threshold up to $T_p$ = 1.36 GeV. Total and differential cross sections have been obtained for the channels $pn\pi^+\pi^0$, $pp\pi^+\pi^-$, $pp\pi^0\pi^0$ and also $nn\pi^+\pi^+$. For intermediate incident energies $T_p >$ 1 GeV, i.e. in the region which is beyond the Roper excitation but at the onset of $\Delta\Delta$ excitation, the total $pp\pi^0\pi^0$ cross section falls behind theoretical predictions by as much as an order of magnitude near 1.2 GeV, whereas the $nn\pi^+\pi^+$ cross section is a factor of five larger than predicted. An isospin decompostion of the total cross sections exhibits a s-channel-like energy dependence in the region of the Roper excitation as well as a significant contribution of an isospin 3/2 resonance other than the $\Delta(1232)$. As possible candidates the $\Delta(1600)$ and the $\Delta(1700)$ are discussed.

2 data tables

Cross section for the (P P PI0 PI0) channel.

Cross sections for the (N N PI+ PI+) and (P N PI+ PI0) channels at EKIN = 1.1 GeV.