A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV, and Cu+Cu collisions sqrt(s_NN) = 22.5, 62.4, and 200 GeV. Fluctuations are measured as a function of collision centrality, transverse momentum range, and charge sign. After correcting for non-dynamical fluctuations due to fluctuations in the collision geometry within a centrality bin, the remaining dynamical fluctuations expressed as the variance normalized by the mean tend to decrease with increasing centrality. The dynamical fluctuations are consistent with or below the expectation from a superposition of participant nucleon-nucleon collisions based upon p+p data, indicating that this dataset does not exhibit evidence of critical behavior in terms of the compressibility of the system. An analysis of Negative Binomial Distribution fits to the multiplicity distributions demonstrates that the heavy ion data exhibit weak clustering properties.
The mean from the NBD fit as a function of $N_{part}$ for 200 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.
The mean from the NBD fit as a function of $N_{part}$ for 62.4 GeV Au+Au collisions over the range 0.2 < $p_T$ < 2.0 GeV/$c$.
PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.
The ratio $p/h$ represents the proton plus anti-proton yield relative to the total charged hadron multiplicity. This shows the $p_T$ dependence of $p/h$ for minimum bias events.
Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azimuthal nearly back-to-back region $\Delta\phi\sim\pi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum widths of $p_{\rm out}$, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at $\sqrt{s}=510$ GeV. The nonperturbative jet widths also appear to increase with $\sqrt{s}$ at a similar $x_T$, which is qualitatively consistent to similar measurements in Drell-Yan interactions. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed to compare to these measurements.
The per-trigger yields are shown as a function of $\Delta\phi$ in several $p_T^{trig}$ $\otimes$ $p_T^{assoc}$ bins.
Differential measurements of the elliptic (v_2) and hexadecapole (v_4) Fourier flow coefficients are reported for charged hadrons as a function of transverse momentum (p_T) and collision centrality or the number of participant nucleons (N_part) for Au+Au collisions at sqrt(s_NN)=200 GeV. The v_{2,4} measurements at pseudorapidity |\eta|<=0.35 obtained with four separate reaction plane detectors positioned in the range 1.0<|\eta|<3.9 show good agreement, indicating the absence of significant \eta-dependent nonflow perturbations. Sizable values for v_4(p_T) are observed with a ratio v_4(p_T,N_part)/v_2^2(p_T,N_part)~0.8 for 50<N_part<200, which is compatible with the combined effects of a finite viscosity and initial eccentricity fluctuations. For N_part>200 this ratio increases up to 1.7 in the most central collisions.
$p_T$ dependence of $v_2$ for charged hadrons for several centrality selections as indicated.
Neutral pion transverse momentum (pT) spectra at mid-rapidity (|y| < 0.35) were measured in Cu+Cu collisions at \sqrt s_NN = 22.4, 62.4, and 200 GeV. Relative to pi -zero yields in p+p collisions scaled by the number of inelastic nucleon-nucleon collisions (Ncoll) at the respective energies, the pi-zero yields for pT \ge 2 GeV/c in central Cu+Cu collisions at 62.4 and 200 GeV are suppressed, whereas an enhancement is observed at 22.4 GeV. A comparison with a jet quenching model suggests that final state parton energy loss dominates in central Cu+Cu collisions at 62.4 GeV and 200 GeV, while the enhancement at 22.4 GeV is consistent with nuclear modifications in the initial state alone.
The average $R_{AA}$ in the interval 2.5 < $p_T$ < 3.5 GeV/$c$ as a function of centrality for Cu+Cu collisions at $\sqrt{s_{NN}}$ = 22.4 GeV. The error (sys.) includes the normalization and $<N_{coll}>$ uncertainties for a typical $N_{coll}$ uncertainty of 12%.
We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.
Collision centrality, energy, and system size dependence of shape parameters.
New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T/ thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 5% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 10% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.
$E\frac{dN^3}{dp^3}$ vs. $p_T$, 0% to 20% centrality $Au+Au$. 90% Limit on 18-20 and 20-22 GeV/c bins.
The production of low mass e+e- pairs for m_{e+e-} < 300 MeV/c^2 and 1 < p_T <5 GeV/c is measured in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. Enhanced yield above hadronic sources is observed. Treating the excess as internal conversions, the invariant yield of direct photons is deduced. In central Au+Au collisions, the excess of direct photon yield over p+p is exponential in transverse momentum, with inverse slope T = 221 +/- 19 (stat) +/- 19 (syst) MeV. Hydrodynamical models with initial temperatures ranging from 300--600 MeV at times of ~ 0.6 - 0.15 fm/c after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at ~ 170 MeV.
The fraction of the direct photon component as a function of $p_T$.
Correlations between p and pbar's at transverse momenta typical of enhanced baryon production in Au+Au collisions are reported. The PHENIX experiment measures same and opposite sign baryon pairs in Au+Au collisions at sqrt(s_NN) = 200 GeV. Correlated production of p and p^bar with the trigger particle from the range 2.5 < p_T < 4.0 GeV/c and the associated particle with 1.8 < p_T < 2.5 GeV/c is observed to be nearly independent of the centrality of the collisions. Same sign pairs show no correlation at any centrality. The conditional yield of mesons triggered by baryons (and anti-baryons) and mesons in the same pT range rises with increasing centrality, except for the most central collisions, where baryons show a significantly smaller number of associated mesons. These data are consistent with a picture in which hard scattered partons produce correlated p and p^bar in the p_T region of the baryon excess.
$1/{N_{trig}}$ ${dN}/{d\Delta\phi}$ distributions for charge selected $\bar{p}$ and $p$ triggers both with associated $p$ for six centrality bins. Triggers have 2.5 < $p_T$ < 4.0 GeV/$c$ and associated particles have 1.8 < $p_T$ < 2.5 GeV/$c$.
Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.
${v_2}/{n_q}$ vs ${p_T}/{n_q}$ for identified particle species obtained in minimum bias Au+Au collisions.
${v_2}/{n_q}$ vs ${p_T}/{n_q}$ for identified particle species obtained in minimum bias Au+Au collisions.
${v_2}/{n_q}$ vs ${p_T}/{n_q}$ for identified particle species obtained in minimum bias Au+Au collisions.