None
No description provided.
No description provided.
No description provided.
We are reporting an improved determination of the electroweak mixing angle sin 2 Θ w from the ratio of ν μ e to ν μ e scattering cross sections. The CHARM II detector was exposed to neutrino and antineutrino wide band beams at the 450 GeV CERN SPS. Including new data collected in 1989 we have obtained 1316 ± 56 ν μ e and 1453 ± 62 ν μ e events. From the ratio of the visible cross sections we determined sin 2 Θ 0 =0.239 ± 0.009(stat) ± 0.007(syst) without radiative corrections and g V e g A e =0.047 ± 0.046 . Combining this last result with recent results on g A e at LEP we obtain g V e = −0.023 ± 0.023.
Systematic error presented includes error from flux normalization 'F'=1.030+- 0.022, no detaled description of the other sources and of the combination pr ocedure.. 'F'.
Without radiative corrections, systematic error combined in quadrature fromconponents listed under SYSTEMATICS.
With radiative corrections as defined by Marciano-Sirlin scheme, see Phys.Rev.D22(1980)2695, Phys.Rev.Lett.46(1981)163, Phys.Rev.D29(1984)945, Phys.Rev.D31(1985)213E, Nucl.Phys.B217(1983)84. CENTRAL VALUE IS FOR M(TOP)=100 GEV, M(HIGGS)=100 GEV.
The polarization PΞ− of Ξ− hyperons produced by 800-GeV protons has been measured for xF from 0.3 to 0.7 and pT from 0.5 to 1.5 GeV/c. PΞ− has a pT dependence similar to that of the Λ but has a different xF behavior. Also, an energy dependence of PΞ− has been observed.
1.3 mv production angle was horizontal. Others are vertical.
Experimental results obtained at the CERN Super Proton Synchrotron on the structure-function ratio F2n/F2p in the kinematic range 0.004<x<0.8 and 0.4<Q2<190 GeV2, together with the structure function F2d determined from a fit to published data, are used to derive the difference F2p(x)-F2n(x). The value of the Gottfried sum F(F2p-F2n)dx/x=0.240±0.016 is below the quark-parton-model expectation of 1/3.
No description provided.
The production of π±,K±,p has been measured in p+Be and p+Au collisions for comparison with central Si+Au collisions. The inverse slope parameters T0 obtained by an exponential fit to the invariant cross sections in transverse mass are found to be, T0p,K+,ππ∼140–160 MeV in p+A collisions, whereas in central Si+Au collisions, T0p,K+∼200–220 MeV >T0ππ∼140–160 MeV at midrapidity. The π± and K+ distributions are shifted backwards in p+Au compared with p+Be. A gradual increase of (dn/dy)K+ per projectile nucleon is observed from p+Be to p+Au to central Si+Au collisions, while pions show no significant increase.
No description provided.
No description provided.
No description provided.
We report on a systematic study of midrapidity transverse energy production and forward energy flow in interactions of16O and32S projectiles with S, Cu, Ag and Au targets at 60 and 200 GeV/nucleon. The variation of the shape of theET distributions with target and projectile mass can be understood from collision geometry. AverageET values determined for central collisions show an increasing stopping power for heavier target nuclei. A higher relative stopping is observed at 60 GeV/nucleon than at 200 GeV/nucleon. Bjorken estimates of the energy density reach approximately 3 GeV/fm3 in highET events at 200 GeV/nucleon with16O and32S projectiles. The systematics of the data and the shapes ofET and pseudorapidity distributions are well described by the Lund model Fritiof.
No description provided.
No description provided.
No description provided.
The production of μ−e+ dileptons by muon neutrinos is studied in a high-statistics bubble-chamber experiment. The experiment consisted of exposing the Fermilab 15-ft bubble chamber filled with a heavy Ne-H2 mix to a wideband neutrino beam. In a total sample of 146 700±11 700 charged-current interactions, 461 events with an e+(Pe+>300 MeV/c) and a μ− are observed. The rate for μ−e+ dilepton production in measured to be (0.42±0.06)%. The energy dependence of this rate is presented. The kinematic distributions for the μ−e+ events are consistent with charm production and subsequent semileptonic decay. A total of 60 KS0 and 31 Λ0 decays were observed in the μ−e+ event sample. The measured rates for neutral-strange-particle production are 0.78±0.12 K0K¯0's and 0.19±0.04 Λ0's per μ−e+ event. Finally, rates for Λc+, D0, and D+ production in charged-current νμ interactions are derived. They are found to be (4−2+10)%, (1.7−0.7+0.5)%, and (1.3−0.5+0.4)%, respectively.
No description provided.
No description provided.
No description provided.
We have measured the polarization of D*, the energy dependence of the polarization, and the spin-density matrix of D* in e+e− annihilation at a center-of-mass energy of 29 GeV using the Time Projection Chamber detector at the SLAC storage ring PEP. In 147 pb−1 of data we see no strong evidence for polarization, alignment, or final-state interactions in this fragmentation process.
Polarization is the factor alpha(z) in the expression d width (D*-->D pi)/domega = C(1+alpha(z)cos(theta)**2).
Spin density matrices for D* --> D0 pi+.
The distributions of quarks in the pion and nucleon are extracted from measurements of the reaction π−N→μ+μ−X at 253 GeV/c in a naive Drell-Yan analysis, as well as QCD-corrected analyses at leading-log and next-to-leading-log order. As xπ→1 the pion structure function shows a term that varies as 1mμμ4, which we interpret as a higher-twist effect. Additionally, the angular distribution of the μ+ in the muon-pair rest frame tends towards sin2θ as xπ→1 and as mμμ→0 in a manner consistent with higher-twist effects. When the strongly mass-dependent higher-twist effects are included as part of the pion structure function, the nucleon structure function agrees well with leading-twist results from deeply inelastic lepton-hadron scattering. A significant advance of the present work is the extension of the analysis to low masses by the subtraction of the Jψ and ψ′ resonances from the continuum. Our analysis covers the kinematic range 0.4<xπ<1.0 and 0.02<xN<0.33 with 3.0<mμμ<8.55 GeV/c2. Cross sections for ψ′ production are presented in an appendix.
No description provided.
No description provided.
No description provided.
This paper presents and contrasts features of the inelastic nuclear reactions of 200 GeV/nucleon 16 O and 32 S ions with emulsion nuclei. Both the multiplicities of shower particles and the extent of target fragmentation have been studied for varying degress of disruption of the projectile nuclei. The results may be interpreted within a simple geometrical model. In particular the rapidity distributions of those events which exhibit complete projectile break-up without any overt sign of low-energy target fragmentation have been determined. The interaction of secondary projectile fragments of charge two or more issuing from oxygen interactions were also studied and the mean free paths in emulsion of the primary 16 O and 32 S ions and all such fragments have been compared to those predicted by a simple Glauber model.
No description provided.
No description provided.
No description provided.