Date

Version 2
Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Lett.B 704 (2011) 467-473, 2011.
Inspire Record 914546 DOI 10.17182/hepdata.102406

We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at $\sqrt{s_{NN}} = 200$ GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, $\eta/s$, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of $\eta/s$ that suggests that the produced medium has a small viscosity per unit entropy.

7 data tables

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 70-80% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 30-40% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

The correlation function C, C is plotted in units of (GeV/c)$^2$ and the relative azimuthal angle ∆φ in radians for 0-5% centrality in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV..Relative statistical errors range from 0.8% in peripheral collisions to 0.9% in the most central collisions at the peak of the distribution.

More…

Measurement of J/psi production in pp collisions at sqrt(s)=7 TeV

The LHCb collaboration Aaij, R. ; Adeva, B. ; Adinolfi, M. ; et al.
Eur.Phys.J.C 71 (2011) 1645, 2011.
Inspire Record 891233 DOI 10.17182/hepdata.57066

The production of $J/\psi$ mesons in proton-proton collisions at $\sqrt{s}$= 7 tev is studied with the LHCb detector at the LHC. The differential cross-section for prompt $J/\psi$ production is measured as a function of the $J/\psi$ transverse momentum p_{\rm T}\ and rapidity $y$ in the fiducial region $p_{\rm T}\in[0;14]$ GeV/c and $y\in[2.0;4.5]$. The differential cross-section and fraction of \j psi\ from $b$-hadron decays are also measured in the same p_{\rm T}\ and $y$ range s. The analysis is based on a data sample corresponding to an integrated luminos ity of 5.2 pb$^{-1}$. The measured cross-sections integrated over the fiducial region are $10.52\pm 0. 04\pm 1.40^{+1.64}_{-2.20}\mu b$ for $\mathrm{prompt}~J/\psi$ production and $1.14 \pm 0. 01\pm 0.16 \mu b$ for $J/\psi$ from $b$-hadron decays, where the first uncertainty is statistical and the second systematic. The $\mathrm{prompt}~J/\psi$ production cross-section is obtained assuming no $J/\psi$ polarisation and the third error indicates the acceptance uncertainty due to this assumption.

10 data tables

Integrated cross section in the defined fiducial region for prompt J/PSIs and for those from b-hadron decay assuming no polarisation. The second systematic error in the prompt cross section is the uncertainty related to the assumption of no polarisation.

The derived cross section for b-hadron production obtained by extrapolation to the full polar angle range using the LHCB MC based on Pythia6.4 and EvtGen and a branching ratio to J/PSI of 1.16+-0.1 PCT.

Mean PT and RMS for prompt J/PSI production (assuming unpolarised).

More…

Observation of the antimatter helium-4 nucleus

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Nature 473 (2011) 353, 2011.
Inspire Record 893021 DOI 10.17182/hepdata.58495

High-energy nuclear collisions create an energy density similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high energy accelerator of heavy nuclei is an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ($^4\bar{He}$), also known as the anti-{\alpha} ($\bar{\alpha}$), consists of two antiprotons and two antineutrons (baryon number B=-4). It has not been observed previously, although the {\alpha} particle was identified a century ago by Rutherford and is present in cosmic radiation at the 10% level. Antimatter nuclei with B < -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by about 1000 with each additional antinucleon. We present the observation of the antimatter helium-4 nucleus, the heaviest observed antinucleus. In total 18 $^4\bar{He}$ counts were detected at the STAR experiment at RHIC in 10$^9$ recorded Au+Au collisions at center-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, which has implications beyond nuclear physics.

1 data table

Differential invariant yields of (anti)baryons evaluated at pT/B =0.875 GeV/c, in central 200 GeV Au+Au collisions.


High $p_{T}$ non-photonic electron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.D 83 (2011) 052006, 2011.
Inspire Record 889563 DOI 10.17182/hepdata.96051

We present the measurement of non-photonic electron production at high transverse momentum ($p_T > $ 2.5 GeV/$c$) in $p$ + $p$ collisions at $\sqrt{s}$ = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons ($\frac{e^++e^-}{2}$) at 3 GeV/$c < p_T <~$10 GeV/$c$ from bottom and charm meson decays to be ${d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0}$ = 4.0$\pm0.5$({\rm stat.})$\pm1.1$({\rm syst.}) nb and ${d\sigma_{D\to e} \over dy_e}|_{y_e=0}$ = 6.2$\pm0.7$({\rm stat.})$\pm1.5$({\rm syst.}) nb, respectively.

48 data tables

The electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3.0$ GeV/c

The electron pair invariant mass distributions for electrons at $8 < p_{T} < 10$ GeV/c

The simulated electron pair invariant mass distributions for electrons at $2.5 < p_{T} < 3$ GeV/c

More…

Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons

The STAR collaboration Agakishiev, H. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 83 (2011) 061901, 2011.
Inspire Record 889553 DOI 10.17182/hepdata.102950

We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two- and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudo-rapidity or relative azimuthal angle from d+Au to central Au+Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.

7 data tables

Projections of 2+1 correlation on $\Delta\phi$ for 200 GeV top 12% central-triggered and mid-central Au+Au and minimum bias d+Au data.

Projections of 2+1 correlation on $\Delta\eta$ for 200 GeV top 12% central-triggered and mid-central Au+Au and minimum bias d+Au data.

Transverse momentum distributions per trigger pair for the same- and away-side hadrons associated with di-jet triggers (|$\Delta\phi$| < 0.5, |$\Delta\eta$| < 0.5).

More…

Production of pions, kaons and protons in pp collisions at sqrt(s)= 900 GeV with ALICE at the LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 71 (2011) 1655, 2011.
Inspire Record 885104 DOI 10.17182/hepdata.57568

The production of $\pi^+$, $\pi^-$, $K^+$, $K^-$, p, and pbar at mid-rapidity has been measured in proton-proton collisions at $\sqrt{s} = 900$ GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum ($p_{\rm T}$) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from $p_{\rm T}$ = 100 MeV/$c$ to 2.5 GeV/$c$. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean $p_{\rm T}$ are compared with previous measurements, and the trends as a function of collision energy are discussed.

4 data tables

Transverse momentum spectra for positive and negative pions.

Transverse momentum spectra for positive and negative kaons.

Transverse momentum spectra for protons and antiprotons.

More…

Study of Jet Shapes in Inclusive Jet Production in pp Collisions at sqrt(s) = 7 TeV using the ATLAS Detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.D 83 (2011) 052003, 2011.
Inspire Record 882984 DOI 10.17182/hepdata.63511

Jet shapes have been measured in inclusive jet production in proton-proton collisions at sqrt(s) = 7 TeV using 3 pb^{-1} of data recorded by the ATLAS experiment at the LHC. Jets are reconstructed using the anti-kt algorithm with transverse momentum 30 GeV < pT < 600 GeV and rapidity in the region |y| < 2.8. The data are corrected for detector effects and compared to several leading-order QCD matrix elements plus parton shower Monte Carlo predictions, including different sets of parameters tuned to model fragmentation processes and underlying event contributions in the final state. The measured jets become narrower with increasing jet transverse momentum and the jet shapes present a moderate jet rapidity dependence. Within QCD, the data test a variety of perturbative and non-perturbative effects. In particular, the data show sensitivity to the details of the parton shower, fragmentation, and underlying event models in the Monte Carlo generators. For an appropriate choice of the parameters used in these models, the data are well described.

124 data tables

Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 30 to 40 GeV and absolute values of the jet rapidity from 0 to 2.8.

Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 40 to 60 GeV and absolute values of the jet rapidity from 0 to 2.8.

Measured Differential Jet Shape RHO as a function of r for jet transverse momentum from 60 to 80 GeV and absolute values of the jet rapidity from 0 to 2.8.

More…

Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
New J.Phys. 13 (2011) 053033, 2011.
Inspire Record 882098 DOI 10.17182/hepdata.57077

Measurements are presented from proton-proton collisions at centre-of-mass energies of sqrt(s) = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase-space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo models, including a new AMBT1 PYTHIA 6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the Monte Carlo models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with pT >100 MeV, is measured to be 3.483 +- 0.009 (stat) +- 0.106 (syst) at sqrt(s) = 0.9 TeV and 5.630 +- 0.003 (stat) +- 0.169 (syst) at sqrt(s) = 7 TeV.

41 data tables

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 900 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 2360 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

Charged-particle multiplicities in proton-proton collisions at a centre-of mass energy of 7000 GeV as a function of pseudorapidity for events with the number of charged particles >=1 having transverse momentum >500 MeV and absolute(pseudorapidity) <2.5.

More…

Measurement of the inclusive isolated prompt photon cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, G. ; Abbott, B. ; Abdallah, J. ; et al.
Phys.Rev.D 83 (2011) 052005, 2011.
Inspire Record 882463 DOI 10.17182/hepdata.57465

A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy sqrt(s) = 7TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<|eta|<1.81 in the transverse energy range 15 < E_T <100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.

3 data tables

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 to 1.37.

The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 to 1.81.


New measurement of the K+- --> pi+-mu+mu- decay

The NA48/2 collaboration Batley, J.R. ; Kalmus, G. ; Lazzeroni, C. ; et al.
Phys.Lett.B 697 (2011) 107-115, 2011.
Inspire Record 878312 DOI 10.17182/hepdata.69636

A sample of 3120 $K^\pm\to\pi^\pm\mu^+\mu^-$ decay candidates with $(3.3\pm0.7)%$ background contamination has been collected by the NA48/2 experiment at the CERN SPS, allowing a detailed study of the decay properties. The branching ratio was measured to be ${\rm BR}=(9.62\pm0.25)\times 10^{-8}$. The form factor $W(z)$, where $z=(M_{\mu\mu}/M_K)^2$, was parameterized according to several models. In particular, the slope of the linear form factor $W(z)=W_0(1+\delta z)$ was measured to be $\delta=3.11\pm0.57$. Upper limits of $2.9\times 10^{-2}$ and $2.3\times 10^{-2}$ on possible charge asymmetry and forward-backward asymmetry were established at 90% CL. An upper limit ${\rm BR}(K^\pm\to\pi^\mp\mu^\pm\mu^\pm)<1.1\times 10^{-9}$ was established at 90% CL for the rate of the lepton number violating decay.

1 data table

The $d\Gamma_{\pi\mu\mu}/dz$ spectrum (background subtracted, corrected for trigger efficiency). Systematic errors, notably the external one due to the branching ratios of the normalization decay mode $K^\pm\to 3\pi^\pm$ according to PDG 2010, are not included.