The elastic cross section for proton proton scattering at 6 GeV c was measured using a 70% polarized beam and a 75% polarized target at the Argonne ZGS. In the range P ⊥ 2 = 0.5 → 2.0( GeV c ) 2 we obtained small error measurements for the ↑↑, ↓↓ and ↑↓ initial spin states perpendicular to the scattering plane. At P ⊥ 2 = 0.5 we also measured the recoil spin and found that the 5 different cross sections were very unequal.
No description provided.
No description provided.
We have measured small angle elastic pion-proton scattering in 40 and 50 GeV c π − beams at Serpukhov. Analysis of the data in the Coulomb interference region yields a value for the ratio of the real to the imaginary part of the strong amplitude, ϱ (0)=−0.074 ± 0.033 at 40 GeV/ c and ϱ (0)=−0.006 ±0.026 at 50 GeV/ c
STATISTICAL ERRORS ONLY.
STATISTICAL ERRORS ONLY.
Differential cross sections for elastic scattering of negative pions on protons are presented for 16 momenta between 996 MeV/ c and 1342 MeV/ c . The cross sections are compared with the predictions from published phase-shift analyses.
No description provided.
In a 48 000-picture exposure of the Fermilab 30-inch hydrogen bubble chamber to a 205 GeV/ c π − beam, we have measured 169 events of the reaction, π − p → π − π + π − p, with a cross section of 635 ± 61 μ b. This reaction proceeds almost entirely via low mass π − → 3 π and p → p ππ dissociation. Factorization is satisfied for p → pππ dissociation in πp and pp interactions.
No description provided.
We have measured elastic pion-proton scattering in a 50 GeV/ c π − beam at the 76 GeV proton synchrotron in Serpukhov. Data are presented for four-momenta transfer squared in the range 0.03 < t < 0.4 (GeV/ c ) 2 .
SLOPE IS 9.1, +0.2, -0.4 GEV**-2 (INCLUDING SYSTEMATIC ERRORS).
We present measurements from a spark chamber experiment of the differential cross-sections for p p → π − π + , K − K + at 20 momenta in the range 0.8–2.4 GeV/ c (c.m. energy 2.02 to 2.57 GeV). The c.m. angular range was −0.95 < cos θ ∗ < 0.95 . There are about 2000π − π + events and about 300 K − K + events at each momentum.
ALL ANGLES.
A large solid angle detector has been used to observe π + π − π o events produced at the φ energy by electron-positron collisions in the Orsay storage ring. Fitting our data with a Breit and Wigner curve, with a fixed width Γ = (3.8±0.4) MeV coming from K O S K O L analysis, we deduce σ e + e − → π + π − π O = (0.70±0.13) μ bat 2 E = Mφ . Using our measurements on the other φ decay modes we deduce ( φ → π + π − π o )/( φ → K o S K o L ) = 0.47±0.06 and ( φ → η o γ )/( φ → K o S K o L ) = 0.077±0.022. Assuming ( φ → K + K − )/( φ → K o S K o L ) = 1.60, we derive σ TOT = (4.7±0.4) μ b, Γ e + e − = (1.27±0.11 keV and g 2 o /4 π = 14.3±1.3 (without finite width correction). Furthermore (from the observation of the ππγ coplanar events) we put an upper limit to the mode e + e − → φ π + π − γ , Γ ( φ → π + π − γ ) ⩽ 0.007 Γ ( φ → Total ) with 90% C.L.
EXPERIMENTAL CROSS SECTIONS INCLUDING RADIATIVE EFFECTS.
FITTED PARTIAL AND TOTAL CROSS SECTION AT PHI PEAK, RADIATIVELY CORRECTED.
An experiment was done using an accelerated polarized proton beam and a polarized proton target. The elastic cross section for proton-proton scattering at 6.0 GeV/c and P⊥2=0.5−1.6 (GeV/c)2 was measured in the spin states ↑ ↑, ↓ ↓, and ↑ ↓ perpendicular to the scattering plane. The cross sections were found to be unequal by up to a factor of 2.
No description provided.
Results are reported based on a study of 3114 π−p events at 205 GeV/c in the National Accelerator Laboratory 30-in. bubble chamber. The measured π−p total and elastic cross sections are 24.0 ± 0.5 and 3.0 ± 0.3 mb, respectively. The elastic differential cross section has a slope of 9.0 ± 0.7 GeV−2 for 0.03≤−t≤0.6 GeV2. The average charged-particle multiplicity for the inelastic events is 8.02 ± 0.12.
No description provided.
No description provided.
A quasi-two-body model based on one-particle exchange and diffraction dissociation has been fitted to data from π−p interactions at 3.9 and 11.9 GeV/c in which a nucleon and 3-6 pions are present in the final state. It is used to estimate partial cross sections for the contributing interaction mechanisms and the dominant resonances which are produced at these energies. The energy dependence of the cross sections is examined and found to be consistent with expected behavior, and reactions are compared and found to agree with simple factorization.
No description provided.
No description provided.
No description provided.