We present the first measurement at the LHC of exclusive J/$\psi$ photoproduction off protons, in ultra-peripheral proton-lead collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV. Events are selected with a dimuon pair produced either in the rapidity interval, in the laboratory frame, $2.5<y<4$ (p-Pb) or $-3.6<y<-2.6$ (Pb--p), and no other particles observed in the ALICE acceptance. The measured cross sections $\sigma (\gamma + {\rm p} \rightarrow J/\psi + {\rm p})$ are 33.2 $\pm$ 2.2 (stat) $\pm$ 3.1 (syst) $\pm$ 0.7 (theo) nb in p-Pb and 284 $\pm$ 36 (stat) $^{+27}_{-32}$ (syst) $\pm$ 26 (theo) nb in Pb-p collisions. We measure this process up to about 700 GeV in the $\gamma {\rm p}$ centre-of-mass, which is a factor of two larger than the highest energy studied at HERA. The data are consistent with a power law dependence of the $J/\psi$ photoproduction cross section in $\gamma {\rm p}$ energies from about 20 to 700 GeV, or equivalently, from Bjorken-$x$ between $\sim 2\times 10^{-2}$ to $\sim 2\times 10^{-5}$, thus indicating no significant change in the gluon density behaviour of the proton between HERA and LHC energies.
Differential cross sections as a function of rapidity for exclusive J/PSI photoproduction off protons in ultra-peripheral p-Pb collisions. The corresponding J/PSI photoproduction cross sections in bins of the GAMMA-P centre-of-mass, W(GAMMA P), are also presented.
Differential cross section as a function of rapidity for exclusive J/PSI photoproduction off protons in ultra-peripheral Pb-p collisions. The corresponding J/PSI photoproduction cross section in a range of the GAMMA-P centre-of-mass, W(GAMMA P), is also presented.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured low mass vector meson, $\omega$, $\rho$, and $\phi$, production through the dimuon decay channel at forward rapidity ($1.2<|y|<2.2$) in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV. The differential cross sections for these mesons are measured as a function of both $p_T$ and rapidity. We also report the integrated differential cross sections over $1<p_T<7$ GeV/$c$ and $1.2<|y|<2.2$: $d\sigma/dy(\omega+\rho\rightarrow\mu\mu) = 80 \pm 6 \mbox{(stat)} \pm 12 \mbox{(syst)}$ nb and $d\sigma/dy(\phi\rightarrow\mu\mu) = 27 \pm 3 \mbox{(stat)} \pm 4 \mbox{(syst)}$ nb. These results are compared with midrapidity measurements and calculations.
Differential cross sections of (OMEGA + RHO) and PHI as functions of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
Differential cross sections of (OMEGA + RHO) and PHI as functions of rapidity. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
N(PHI) / ( N(OMEGA) + N(RHO) ) as a function of PT. The statistical uncertainty includes the type-A systematic uncertainty. The systematic uncertainty is the type-B systematic uncertainty.
The ALICE Collaboration has studied the inclusive production of the charmonium state $\psi(2S)$ in proton-lead (p-Pb) collisions at the nucleon-nucleon centre of mass energy $\sqrt{s_{NN}}$ = 5.02 TeV at the CERN LHC. The measurement was performed at forward ($2.03<y_{cms}<3.53$) and backward ($-4.46<y_{cms}<-2.96$) centre of mass rapidities, studying the decays into muon pairs. In this paper, we present the inclusive production cross sections $\sigma_{\psi(2S)}$, both integrated and as a function of the transverse momentum $p_{T}$, for the two $y_{cms}$ domains. The results are compared to those obtained for the 1S vector state (J/$\psi$), by showing the ratios between the production cross sections, as well as the double ratios $[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pPb}/[\sigma_{\psi(2S)}/\sigma_{J/\psi}]_{pp}$ between p-Pb and proton-proton collisions. Finally, the nuclear modification factor for inclusive $\psi(2S)$ is evaluated and compared to the measurement of the same quantity for J/$\psi$ and to theoretical models including parton shadowing and coherent energy loss mechanisms. The results show a significantly larger suppression of the $\psi(2S)$ compared to that measured for J/$\psi$ and to models. These observations represent a clear indication for sizeable final state effects on $\psi(2S)$ production.
The cross section ratios B.R. sigma_Psi(2S)/ B.R. sigma_JPsi obtained in p-Pb and Pb-p collisions. The first uncertainty is statistical, the second one is systematic.
The double ratio [sigma(Psi(2S))/sigma(J/Psi)]_pA/[sigma(Psi(2S))/sigma(J/Psi)]_pp for p-Pb and Pb-p collisions. First uncertainty is statistical, the second one is the correlated systematic, while the third is the uncorrelated systematic.
The Psi(2S) nuclear modification factor RpA measured in pPb and Pbp collisions. The first uncertainty is statistical, the second one is the correlated systematic and the third the uncorrelated systematic.
The inclusive production cross sections at forward rapidity of J/$\psi$, $\psi$(2S), $\Upsilon$(1S) and $\Upsilon$(2S) are measured in pp collisions at $\sqrt{s} = 7$ TeV with the ALICE detector at the LHC. The analysis is based in a data sample corresponding to an integrated luminosity of 1.35 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel and the signal yields are evaluated by fitting the $\mu^+\mu^-$ invariant mass distributions. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the ranges $0 < p_{\rm T} < 20$ GeV/$c$ for J/$\psi$, $0 < p_{\rm T} < 12$ GeV/$c$ for all other resonances and for $2.5 < y < 4$. The measured cross sections integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are: $\sigma_{J/\psi} = 6.69 \pm 0.04 \pm 0.63$ $\mu$b, $\sigma_{\psi^{\prime}} = 1.13 \pm 0.07 \pm 0.14$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 54.2 \pm 5.0 \pm 6.7$ nb and $\sigma_{\Upsilon{\rm (2S)}} = 18.4 \pm 3.7 \pm 2.2$ nb, where the first uncertainty is statistical and the second one is systematic. The results are compared to measurements performed by other LHC experiments and to theoretical models.
Differential production cross sections of J/psi as a function of pT.
Differential production cross sections of J/psi as a function of rapidity.
integrated production cross section of J/psi.
Inclusive J/$\psi$ production has been studied with the ALICE detector in p-Pb collisions at the nucleon-nucleon center of mass energy $\sqrt{s_{\rm NN}}$ = 5.02 TeV at the CERN LHC. The measurement is performed in the center of mass rapidity domains $2.03<y_{\rm cms}<3.53$ and $-4.46<y_{\rm cms}<-2.96$, down to zero transverse momentum, studying the $\mu^+\mu^-$ decay mode. In this paper, the J/$\psi$ production cross section and the nuclear modification factor $R_{\rm pPb}$ for the rapidities under study are presented. While at forward rapidity, corresponding to the proton direction, a suppression of the J/$\psi$ yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. The ratio of the forward and backward yields is also measured differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results.
The inclusive JPsi nuclear modification factor obtained in p-Pb and Pb-p collisions. The first uncertainty is statistical, the second one is the uncorrelated systematic uncertainty, while the third one is the partially correlated systematic uncertainty. The fourth is a global uncertainty common to p-Pb and Pb-p results.
The rapidity dependence of the inclusive JPsi production cross-section obtained in p-Pb and Pb-p collisions. The first uncertainty is statistical, the second one is the uncorrelated systematic uncertainty, while the third one is the partially correlated systematic uncertainty.
The rapidity dependence of the inclusive JPsi nuclear modification factor obtained in p-Pb and Pb-p collisions. The first uncertainty is statistical, the second one is the uncorrelated systematic uncertainty, while the third one is the partially correlated systematic uncertainty. The fourth is a global uncertainty common to p-Pb and Pb-p results.
The ALICE Collaboration has measured the inclusive production of muons from heavy flavour decays at forward rapidity, 2.5 < y < 4, in pp and Pb-Pb collisions at $\sqrt {s_{NN}}$ = 2.76 TeV. The $p_{\rm T}$-differential inclusive cross section of muons from heavy flavour decays in pp collisions is compared to perturbative QCD calculations. The nuclear modification factor is studied as a function of pt and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3-4 is observed in 6 < $p_{\rm T}$ < 10 GeV/$c$. The suppression shows no significant $p_{\rm T}$ dependence.
Transverse momentum differential inclusive cross section of muons from heavy-flavour decays in the rapidity range 2.5-4.
RAA of muons from heavy-flavour decays in the rapidity range 2.5-4 as a function of PT in the 0-10% and 40-80% centrality classes. The second (sys) error is the separate normalization error for each class.
RAA of muons from heavy-flavour decays as a function of the mean number of participating nucleons, NPART, in the rapidity range 2.5-4.0 and PT 6-10 GeV. The first (sys) error is the correlated systematic error and the second is the uncorrelated systematic error.
The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L^e_int=1.1 nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c. The results are compared with previously published results at sqrt(s)=7 TeV and with theoretical calculations.
Double differential J/$\psi$ production cross section at $\sqrt{s}=2.76$ TeV. The first uncertainty is statistical, the second one is $p_{\rm T}$-coorelated, the third one is uncorrelated. Polarization-related uncertainties are not included.
The $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).
the $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).
The production of muons from heavy flavour decays is measured at forward rapidity in proton-proton collisions at $\sqrt{s} = 7$ TeV collected with the ALICE experiment at the LHC. The analysis is carried out on a data sample corresponding to an integrated luminosity $L_{\rm int} = 16.5$ nb$^{-1}$. The transverse momentum and rapidity differential production cross sections of muons from heavy flavour decays are measured in the rapidity range 2.5 < y < 4, over the transverse momentum range 2 < $p_{\rm T}$ < 12 GeV/$c$. The results are compared to predictions based on perturbative QCD calculations.
pT-differential production cross section of muons from heavy flavour decays, in the rapidity range 2.5<y<4.
y-differential production cross section of muons from heavy flavour decays, in the range 2<pT<12 GeV/C.
pT-differential production cross section of muons from heavy flavour decays, in the rapidity range 2.5<y<2.8.
We have studied J/psi production in pp collisions at $\sqrt{s}=7$ TeV at the LHC through its muon pair decay. The polar and azimuthal angle distributions of the decay muons were measured, and results on the J/$\psi$ polarization parameters $\lambda_{\theta}$ and $\lambda_\phi$ were obtained. The study was performed in the kinematic region 2.5<y<4, 2<$p_{\rm T}$<8 GeV/$c$, in the helicity and Collins-Soper reference frames. In both frames, the polarization parameters are compatible with zero, within uncertainties.
$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.
$\lambda_\phi$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the helicity reference frame.
$\lambda_\theta$ as a function of $p_{\rm T}$ for inclusive J/$\psi$, measured in the Collins-Soper reference frame.
First measurements of the W -> lnu and Z/gamma* -> ll (l = e, mu) production cross sections in proton-proton collisions at sqrt(s) = 7 TeV are presented using data recorded by the ATLAS experiment at the LHC. The results are based on 2250 W -> lnu and 179 Z/gamma* -> ll candidate events selected from a data set corresponding to an integrated luminosity of approximately 320 nb-1. The measured total W and Z/gamma*-boson production cross sections times the respective leptonic branching ratios for the combined electron and muon channels are $\stotW$ * BR(W -> lnu) = 9.96 +- 0.23(stat) +- 0.50(syst) +- 1.10(lumi) nb and $\stotZg$ * BR(Z/gamma* -> ll) = 0.82 +- 0.06(stat) +- 0.05(syst) +- 0.09(lumi) nb (within the invariant mass window 66 < m_ll < 116 GeV). The W/Z cross-section ratio is measured to be 11.7 +- 0.9(stat) +- 0.4(syst). In addition, measurements of the W+ and W- production cross sections and of the lepton charge asymmetry are reported. Theoretical predictions based on NNLO QCD calculations are found to agree with the measurements.
Measured fiducial cross section times leptonic branching ratio for W+ production in the W+ -> e+ nu final state.
Measured fiducial cross section times leptonic branching ratio for W- production in the W- -> e- nubar final state.
Measured fiducial cross section times leptonic branching ratio for W+/- production in the combined W+ -> e+ nu and W- -> e- nubar final state.