The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range $1 < p_{\rm T} < 8$ Gev/$c$ with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy $\sqrt{s} = 7$ TeV using an integrated luminosity of 2.2 nb$^{-1}$. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs.
Double differential cross section for charm and beauty electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).
We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at mid-rapidity (|eta|<0.35) with the PHENIX detector at the Relativistic Heavy Ion Collider. The measured asymmetries are consistent with zero within the statistical errors. We obtained a constraint for the polarized gluon distribution in the proton of |Delta g/g(log{_10}x= -1.6^+0.5_-0.4, {mu}=m_T^c)|^2 < 0.033 (1 sigma), based on a leading-order perturbative-quantum-chromodynamics model, using the measured asymmetry.
Invariant differential cross sections of electrons from heavy-flavor decays.
Double-spin asymmetry of the heavy flavor electron production.
The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.
The cross section results for forward neutron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV are shown. Two different forms, exponential and Gaussian, were used for the $p_T$ distribution. The integrated $p_T$ region for each bin is 0 < $p_T$ < 0.11$x_F$ GeV/$c$.
The $x_F$ dependence of $A_N$ for neutron production in the ZDC trigger sample.
The $x_F$ dependence of $A_N$ for neutron production for the ZDC$\otimes$BBC trigger sample.
In this Letter we report the first results on $\pi^\pm$, K$^\pm$, p and $\mathrm {p\overline{p}}$ production at mid-rapidity ($\left|y\right|<0.5$) in central Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV, measured by the ALICE experiment at the LHC. The $p_{\rm T}$ distributions and yields are compared to previous results at $\sqrt{s_{\rm NN}}$ = 200 GeV and expectations from hydrodynamic and thermal models. The spectral shapes indicate a strong increase of the radial flow velocity with $\sqrt{s_{\rm NN}}$, which in hydrodynamic models is expected as a consequence of the increasing particle density. While the ${\rm K}/\pi$ ratio is in line with predictions from the thermal model, the ${\rm p}/\pi$ ratio is found to be lower by a factor of about 1.5. This deviation from thermal model expectations is still to be understood.
Transverse momentum distribution for positve and negative pions.
Transverse momentum distribution for positve and negative kaons.
Transverse momentum distribution for positve and negative protons.
The production of K$^{*}$(892)$^{0}$ and $\phi$(1020) in pp collisions at $\sqrt{s}=7$ TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra d$^{2}$N/d$y$d$p_{\rm T}$ at midrapidity $|y|<0.5$ in the range $0<p_{\rm T}<6$ GeV/$c$ for K$^{*}$(892)$^{0}$ and $0.4<p_{\rm T}<6$ GeV/$c$ for $\phi$(1020) are reported and compared to model predictions. Using the yield of pions, kaons, and Omega baryons measured previously by ALICE at $\sqrt{s}=7$ TeV, the ratios K$^{*}$/K$^{-}$, $\phi$/K$^{*}$, $\phi$/K$^{-}$, $\phi/\pi^{-}$, and ($\Omega$ + $\overline{\Omega}$)/$\phi$ are presented. The values of the K$^{*}$/K$^{-}$, $\phi$/K$^{*}$ and $\phi$/K$^{-}$ ratios are similar to those found at lower centre-of-mass energies. In contrast, the $\phi/\pi^{-}$ ratio, which has been observed to increase with energy, seems to saturate above 200 GeV. The ($\Omega$ + $\overline{\Omega}$)/$\phi$ ratio in the $p_{\rm T}$ range $1$-$5$ GeV/$c$ is found to be in good agreement with the prediction of the HIJING/BB v2.0 model with a strong colour field.
pT-differential production yields of K*0 mesons in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.
pT-differential production yields of phi mesons in INEL pp collisions at sqrts 7 TeV in |y| < 0.5.
The inclusive transverse momentum ($p_{\rm T}$) distributions of primary charged particles are measured in the pseudo-rapidity range $|\eta|<0.8$ as a function of event centrality in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=2.76$ TeV with ALICE at the LHC. The data are presented in the $p_{\rm T}$ range $0.15<p_{\rm T}<50$ GeV/$c$ for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor $R_{\rm{AA}}$ using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-$p_{\rm T}$ particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with $R_{\rm{AA}}\approx0.13$ at $p_{\rm T}=6$-7 GeV/$c$. Above $p_{\rm T}=7$ GeV/$c$, there is a significant rise in the nuclear modification factor, which reaches $R_{\rm{AA}} \approx0.4$ for $p_{\rm T}>30$ GeV/$c$. In peripheral collisions (70-80%), the suppression is weaker with $R_{\rm{AA}} \approx 0.7$ almost independently of $p_{\rm T}$. The measured nuclear modification factors are compared to other measurements and model calculations.
Normalized differential primary charged particle yield in the centrality interval 0-5%.
Normalized differential primary charged particle yield in the centrality interval 5-10%.
Normalized differential primary charged particle yield in the centrality interval 10-20%.
Measurements of cross sections of inelastic and diffractive processes in proton--proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass $M_X < 200$ GeV/$c^2$) $\sigma_{\rm SD}/\sigma_{\rm INEL} = 0.21 \pm 0.03, 0.20^{+0.07}_{-0.08}$, and $0.20^{+0.04}_{-0.07}$, respectively at centre-of-mass energies $\sqrt{s} = 0.9, 2.76$, and 7~TeV; for double diffraction (for a pseudorapidity gap $\Delta\eta > 3$) $\sigma_{\rm DD}/\sigma_{\rm INEL} = 0.11 \pm 0.03, 0.12 \pm 0.05$, and $0.12^{+0.05}_{-0.04}$, respectively at $\sqrt{s} = 0.9, 2.76$, and 7~TeV. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: $\sigma_{\rm INEL} = 62.8^{+2.4}_{-4.0} (model) \pm 1.2 (lumi)$ mb at $\sqrt{s} =$ 2.76~TeV and $73.2^{+2.0}_{-4.6} (model) \pm 2.6 (lumi)$ mb at $\sqrt{s}$ = 7~TeV. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton--antiproton and proton--proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.
Production ratios of SD with $M_{X} < 200 GeV/c^2$ to INEL.
Production ratios of DD with $\Delta\eta >3$ to INEL.
Single diffraction cross-section for $M_{X} < 200 GeV/c^2$.
The PHENIX experiment has measured the production of neutral pions in Au+Au collisions at sqrt(s_NN)=200 GeV. The new data offer a fourfold increase in recorded luminosity, providing higher precision and a larger reach in transverse momentum, p_T, to 20 GeV/c. The production ratio of eta/pi^0 is 0.46+/-0.01(stat)+/-0.05(syst), constant with p_T and collision centrality. The observed ratio is consistent with earlier measurements, as well as with the p+p and d+Au values. The production of pi^0 is suppressed by a factor of 5, as in earlier findings. However, with the improved statistical precision a small but significant rise of the nuclear modification factor, R_AA, vs p_T, with a slope of 0.0106+/-^(0.0034)_(0.0029)[GeV/c]^-1, is discernible in central collisions. A phenomenological extraction of the average fractional parton energy loss shows a decrease with increasing p_T. To study the path length dependence of suppression, the pi^0 yield was measured at different angles with respect to the event plane; a strong azimuthal dependence of the pi^0 R_AA is observed. The data are compared to theoretical models of parton energy loss as a function of the path length, L, in the medium. Models based on pQCD are insufficient to describe the data, while a hybrid model utilizing pQCD for the hard interactions and AdS/CFT for the soft interactions is consistent with the data.
Invariant yields of neutral pions, all centralities
Invariant yields of neutral pions, all centralities
$\Eta/ \pi^0 ratios
The PHENIX experiment has measured electrons and positrons at midrapidity from the decays of hadrons containing charm and bottom quarks produced in d+Au and p+p collisions at sqrt(s_NN)=200 GeV at the Relativistic Heavy Ion Collider, in the transverse-momentum range 0.85 < pT < 8.5 GeV/c. In central d+Au collisions, the nuclear modification factor R_dA at 1.5 < pT < 5 GeV/c displays evidence of enhancement of these electrons, relative to those produced in p+p collisions, and shows that the mass-dependent Cronin enhancement observed at RHIC extends to the heavy-D-meson family. A comparison with the neutral-pion data suggests that the difference in cold-nuclear-matter effects on light- and heavy-flavor mesons could contribute to the observed differences between the pi0 and heavy-flavor-electron nuclear modification factor R_AA.
Heavy flavor electron yield, Run-8 $p$ + $p$, $d$+Au collisions. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).
Heavy flavor electron yield, $d$+Au $\implies$ CHARGED X. Electrons from heavy flavor decays, separated by centrality. The lines represent a fit to the previous $p+p$ result [23], scaled by $N_{coll}$. The inset shows the ratio of photonic background electrons determined by the converter and cocktail methods for Minimum Bias $d$+Au collisions, with error bars (boxes) that represent the statistical uncertainty on the converter data (systematic uncertainty on the photonic-electron cocktail).
Heavy flavor electron $R_{dA}$ 0-100% d+Au collisions. The nuclear modification factors $R_{dA}$ and $R_{AA}$ for minimum bias $d$+Au and Au+Au collisions, for the $\pi^{0}$ and $e^{\pm}_{HF}$. The two boxes on the right side of the plot represent the global uncertainties in the $d$+Au (left) and Au+Au (right) values of $N_{coll}$ . An additional common global scaling uncertainty of 9.7% on $R_{dA}$ and $R_{AA}$ from the $p+p$ reference data is omitted for clarity.
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and 62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields are presented as a function of both collision centrality and transverse momentum. Nuclear modifications are obtained for central relative to peripheral Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative to scaled p+p cross sections obtained from other measurements (R_AA). The observed suppression patterns at 39 and 62.4 GeV are quite similar to those previously measured at 200 GeV. This similar suppression presents a challenge to theoretical models that contain various competing mechanisms with different energy dependencies, some of which cause suppression and others enhancement.
Estimates used for the 39- and 62.4-GeV $J/\psi$ $p$+$p$ cross sections along with their uncertainties.
$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.
$J/\psi$ invariant yields are shown for Au+Au collisions at 39 and 62.4 GeV as a function of the number of participating nucleons.