Transverse momentum (p^e_T) spectra of electrons from semileptonic weak decays of heavy flavor mesons in the range of 0.3 < p^e_T < 9.0 GeV/c have been measured at mid-rapidity (|eta| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The nuclear modification factor R_AA with respect to p+p collisions indicates substantial energy loss of heavy quarks in the produced medium. In addition, the azimuthal anisotropy parameter v_2 has been measured for 0.3 < p^e_T < 5.0 GeV/c in Au+Au collisions. Comparisons of R_AA and v_2 are made to various model calculations.
The jet cross-section and jet-substructure observables in $p$$+$$p$ collisions at $\sqrt{s}=200$ GeV were measured by the PHENIX Collaboration at the Relativistic Heavy Ion Collider (RHIC). Jets are reconstructed from charged-particle tracks and electromagnetic-calorimeter clusters using the anti-$k_{t}$ algorithm with a jet radius $R=0.3$ for jets with transverse momentum within $8.0<p_T<40.0$ GeV/$c$ and pseudorapidity $|η|<0.15$. Measurements include the jet cross section, as well as distributions of SoftDrop-groomed momentum fraction ($z_g$), charged-particle transverse momentum with respect to jet axis ($j_T$), and radial distributions of charged particles within jets ($r$). Also meaureed was the distribution of $ξ=-ln(z)$, where $z$ is the fraction of the jet momentum carried by the charged particle. The measurements are compared to theoretical next-to and next-to-next-to-leading-order calculatios, PYTHIA event generator, and to other existing experimental results. Indicated from these meaurements is a lower particle multiplicity in jets at RHIC energies when compared to models. Also noted are implications for future jet measurements with sPHENIX at RHIC as well as at the future Electron-Ion Collider.
None
No description provided.
No description provided.
Transverse momentum ( p T ) distributions of inclusive photons and neutral pions at midrapidity are measured with a lead glass calorimeter in 60 and 200 A GeV 16 O + nucleus and proton + nucleus reactions . The variation of the average transverse momentum is investigated as function of centrality, determined by measurements of the remaining energy of the projectile and the charged particle multiplicity. For small values of the entropy, deduced from the multiplicity density, an increase in average p T is observed levelling off for larger values of entropy. The target-mass and energy dependence of π 0 p T distributions are presented.
No description provided.
No description provided.
No description provided.
Results are presented from reactions of 60 A GeV and 200 A GeV 16 O projectiles with C, Cu, Ag, and Au nuclei. Energy spectra measured at zero degrees and transverse energy distributions in the pseudorapidity range from 2.4 to 5.5 are shown. The average transverse energy per participant is found to be nearly independent of target mass. Estimates of nuclear stopping and of attained energy densities are made.
STOPPING POWER IS THE QUANTITY GIVEN IN THIS TABLE. IT IS DEFINED AS ( D(ET(EXP)/D(ETA) / D(ET(THEORY)/D(ETA) ) AND THE DENOMINATOR IS TAKEN TO BE 0.5*E(HADRON IN CM). ETA IS THE PSEUDO-RAPIDITY.
Minimum Bias production cross sections of $\eta$ mesons have been measured in 200AGeV S+Au and S+S collisions at the CERN SPS by reconstructing the $\eta\rightarrow\gamma\gamma$ decay. The measurements have been made over the rapidity range $2.1 \leq y \leq 2.9$ using the leadglass spectrometer of WA80. Within the statistical and systematical uncertainties the spectral shapes of $\pi~0$ and $\eta$ mesons yields are identical when their invariant differential cross section is plotted as a function of the transverse mass. The relative normalization of the $\eta$ to $\pi~0$ transverse mass spectra is found to be $0.53 \pm 0.07$ for S+Au and $0.43 \pm 0.15$ for S+S reactions. Extrapolation to full phase space leads to an integrated cross section ratio of $\eta$ to $\pi~0$ mesons of $0.15 \pm 0.02 {\rm (stat.)} \pm 0.02 {\rm (syst.)}$, and $0.12 \pm 0.03 {\rm (stat.)} \pm 0.02 {\rm (syst.)}$ for S+Au and S+S collisions, respectively.
No description provided.
No description provided.
No description provided.
The ALICE collaboration reports the measurement of the inclusive J/psi yield as a function of charged particle pseudorapidity density dN_{ch}/deta in pp collisions at sqrt{s} = 7 TeV at the LHC. J/psi particles are detected for p_t > 0, in the rapidity interval |y| < 0.9 via decay into e+e-, and in the interval 2.5 < y < 4.0 via decay into mu+mu- pairs. An approximately linear increase of the J/psi yields normalized to their event average (dN_{J/psi}/dy)/<dN_{J/psi}/dy> with (dN_{ch}/deta)/<dN_{ch}/deta> is observed in both rapidity ranges, where dN_{ch}/deta is measured within |eta| < 1 and p_t > 0. In the highest multiplicity interval with <dN_{ch}/deta(bin)> = 24.1, corresponding to four times the minimum bias multiplicity density, an enhancement relative to the minimum bias J/psi yield by a factor of about 5 at 2.5 < y < 4 (8 at |y| < 0.9) is observed.
The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-electron channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.
The relative J/psi yield (dN_(j/psi)/dy)/<dN_(j/psi)/dy> in the di-muon channel as a function of the relative charged particle multiplicity density (dN_(ch)/deta)/<dN_(ch)/deta>.
The invariant differential cross section for inclusive neutral pion production in p+p collisions at sqrt(s_NN) = 200 GeV has been measured at mid-rapidity |eta| < 0.35 over the range 1 < p_T <~ 14 GeV/c by the PHENIX experiment at RHIC. Predictions of next-to-leading order perturbative QCD calculations are consistent with these measurements. The precision of our result is sufficient to differentiate between prevailing gluon-to-pion fragmentation functions.
The invariant differential cross section as a function of PT. The mean PT here is defined as the PT for which the cross section equals its average over thebin.
The Fermilab E866/NuSea Collaboration has measured the Drell-Yan dimuon cross sections in 800 GeV/$c$ $pp$ and $pd$ collisions. This represents the first measurement of the Drell-Yan cross section in $pp$ collisions over a broad kinematic region and the most extensive study to date of the Drell-Yan cross section in $pd$ collisions. The results indicate that recent global parton distribution fits provide a good description of the light antiquark sea in the nucleon over the Bjorken-$x$ range $0.03 \lesssim x < 0.15$, but overestimate the valence quark distributions as $x \to 1$.
Measurment of the scaling form of the MU+ MU- cross section in the XL range-0.05 to 0.05 from the hydrogen target.
Measurment of the scaling form of the MU+ MU- cross section in the XL range0.05 to 0.10 from the hydrogen target.
Measurment of the scaling form of the MU+ MU- cross section in the XL range0.10 to 0.15 from the hydrogen target.
A precise measurement of the ratio of Drell-Yan yields from an 800 GeV/c proton beam incident on hydrogen and deuterium targets is reported. Over 140,000 Drell-Yan muon pairs with dimuon mass M_{mu+ mu-} >= 4.5 GeV/c^2 were recorded. From these data, the ratio of anti-down (dbar) to anti-up (ubar) quark distributions in the proton sea is determined over a wide range in Bjorken-x. A strong x dependence is observed in the ratio dbar/ubar, showing substantial enhancement of dbar with respect to ubar for x<0.2. This result is in fair agreement with recent parton distribution parameterizations of the sea. For x>0.2, the observed dbar/ubar ratio is much nearer unity than given by the parameterizations.
No description provided.