Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV
We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.
From the measurements of the inclusive production ratios between π - , K - and p̄ at Feynman x = 0 in 360 GeV/ c pp interactions and using the predictions of the Lund fragmentation model, we determine the strangeness and diquark suppression factors and find γ s , l = 0.28 ± 0.03 and γ D , l = 0.063 ± 0.011 .
No description provided.
We have studied the inclusive production of strange meson and baryon resonances in 360 GeV/cpp interactions. Cross sections forK*+(892) andK*−(892) are estimated to be 4.42±0.62 mb and 2.54±0.47 mb respectively and those for∑+(1385) and∑−(1385) are 0.67±0.11 mb and 0.26±0.07 mb respectively. Longitudinal and transverse momentum distributions forK*(892) and Σ(1385) are presented, as well as for their decay productsK0 and Λ. An estimation is given on theK*(1430) and∑*(1915) productions.
No description provided.