Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $\bar{\nu}_e$ appearance oscillation experiments. The differential cross sections for $\pi^0$ momentum and production angle, for events with a single observed $\pi^0$ and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the $\pi^0$ kinematics for this process.
Flux-averaged differential cross section in $\pi^0$ momentum, $d\sigma/dp_{\pi^0}(10^{-40}\text{cm}^2/\text{nucleon}/(\text{GeV/c})$, for 1$\pi^0$ production with statistical (stat) and systematic (sys) uncertainties.
Flux-averaged differential cross section in $\pi^0$ angle, $d\sigma/d\theta_{\pi^0}(10^{-42}\text{cm}^2/\text{nucleon}/\text{deg.})$, for 1$\pi^0$ production with statistical (stat) and systematic (sys) uncertainties.
Spectra of $K^0_S$ mesons and $\Lambda$ hyperons were measured in p+C interactions at 31 GeV/c with the large acceptance NA61/SHINE spectrometer at the CERN SPS. The data were collected with an isotropic graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections, charged pion spectra, and charged kaon spectra were previously measured using the same data set. Results on $K^0_S$ and $\Lambda$ production in p+C interactions serve as reference for the understanding of the enhancement of strangeness production in nucleus-nucleus collisions. Moreover, they provide important input for the improvement of neutrino flux predictions for the T2K long baseline neutrino oscillation experiment in Japan. Inclusive production cross sections for $K^0_S$ and $\Lambda$ are presented as a function of laboratory momentum in intervals of the laboratory polar angle covering the range from 0 up to 240 mrad. The results are compared with predictions of several hadron production models. The $K^0_S$ mean multiplicity in production processes $
$K^0_S$ production cross sections in the [0, 20] mrad polar interval.
$K^0_S$ production cross sections in the [20, 140] mrad polar interval.
$K^0_S$ production cross sections in the [140, 240] mrad polar interval.
Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.
The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 20 to 140 mrad. The errors on the ratios are statistical only.
The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 140 to 240 mrad. The errors on the ratios are statistical only.
The inclusive production rates of π±,K± andp\(\bar p\) inZ0 decays have been measured with the OPAL detector at LEP. Using the energy loss measurement in the jet chamber, the momentum range up to the beam energy (45.6 GeV/c) has been covered. Differential cross sections and total particle yields are given. Comparisons of the inclusive momentum spectra and the total rates with predictions of the JETSET and the HERWIG Monte Carlo model are presented. The total single rates are found to be 17.05±0.43 π±, 2.42±0.13K± and 0.92±0.11p\(\bar p\) per hadronic event. Predictions of JETSET for cross sections and total rates agree very well for π±; however, for momenta greater than 4 GeV/c,K± rates are underestimated and\(\bar p\) rates are overestimated. Combined with data of other particle species there is evidence that the peak positions in the ξ=ln(1/xp) distributions show a different mass dependence for mesons and baryons. However, both JETSET and HERWIG Monte Carlo predictions agree with the observed data.
Normalised momentum distribution for charged pion production.
Normalised momentum distribution for charged kaon production.
Normalised momentum distribution for proton / antiproton production.
The invariant cross section of the reaction of deuteron stripping on carbon target has been measured at a deuteron momentum of 8.9 GeV/c. The cross section is obtained at a zero detection angle of the stripping proton: E/p2xd2σ/dpdΩ=(281+-9)xbxGeV/srx(GeV/c)3. This value is consistent with the one calculated in the framework of the Bertocci-Treleani model of deuteron fragmentation. When the method of Nissen-Meyer is used for orthogonalization of the wave functions of primary deuteron and the (np) system, resulting from its disintegration, a similar calculation gives the result, which is 1.4 times larger than the measured value. Distribution in the cosine of angle of proton yield at the fixed proton momentum p turned out to be near to isotropy one and distribution in p at the fixed cos theta has the maximum at p=50 MeV/c
.
.
.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.