Charged Charm Production in Proton - Emulsion Interactions at 400-{GeV}/$c$

The Aligarh-Bombay-Chandigarh-Jammu-Varanasi collaboration Aziz, T. ; Ahmad, S. ; Ahrar, H. ; et al.
Z.Phys.C 27 (1985) 325, 1985.
Inspire Record 206837 DOI 10.17182/hepdata.18517

A study of charged charm production is made at 400 GeV incident energy of protons in nuclear emulsion. A total of 7005 primary stars have been scrutinized to look for charm particle decays in the forward cone within a decay distance of 100–1,000 μm (3,056 stars) and 100–2,000 μm (3,949 stars). In all 10 charm candidates decaying to 3 charged particles plus neutrals have been observed. Background due to secondary interactions for events of such topology is estimated to be ≈3. Background due to strange particle decays is estimated to be negligible. The rest of the events are attributed toΛc+ andD± decays. This leads to a value of 91±35 μb/nucleon for the total charged charm production cross section. Using production cross section forD± from other experiments we obtainΛc+ production cross section as 62±27 μb/nucleon. Two cases of pair production of charm have been seen.

2 data tables

Axis error includes +- 0.0/0.0 contribution (NOT GIVENDECAY-BR(BRN=D+ --> 3CHARGED (NEUTRALS), BR=0.5)//DECAY-BR(BRN=D- --> 3CHARGED (NEUTRALS), BR=0.5)//DECAY-BR(BRN=LAMBDA/C+ --> 3CHARGED (NEUTRALS), BR=0.6)).

Axis error includes +- 0.0/0.0 contribution (NOT GIVENDECAY-BR(BRN=D+ --> 3CHARGED (NEUTRALS), BR=0.5)//DECAY-BR(BRN=D- --> 3CHARGED (NEUTRALS), BR=0.5)//DECAY-BR(BRN=LAMBDA/C+ --> 3CHARGED (NEUTRALS), BR=0.6)).


Upper Limits for Charm Production in 150-{GeV} $p$ Be Interactions

The ACCMOR collaboration Bailey, R. ; Becker, H. ; Belau, E. ; et al.
Nucl.Phys.B 239 (1984) 15-26, 1984.
Inspire Record 193967 DOI 10.17182/hepdata.33882

A search has been made for the hadronic production of charmed baryons and mesons with a large aperture forward magnetic spectrometer using 150 GeV protons originating from the CERN-SPS. A prompt electron trigger was used as a signature for charm. Upper limits at 90% confidence level have been obtained for the production of Λ c + D 0 , D 0 D + and D − : σ(Λ c ) ⩽ 8 μ b , σ( D 0 ) ⩽ 64 μ b , σ( D 0 ) < 37 μ b , σ( D + ) ⩽ 51 μ b and σ( D − ) ⩽ 49 μ b per nucleon, assuming linear A dependence. Systematic errors due to uncertainties in branching ratios and to model dependence of the acceptance calculation are discussed.

1 data table

No description provided.