Angular analysis of the decay B$^+$ $\to$ K$^*$(892)$^+\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} =$ 8 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-BPH-15-009, 2020.
Inspire Record 1826544 DOI 10.17182/hepdata.99387

Angular distributions of the decay B$^+$ $\to$ K$^*$(892)$^+\mu^+\mu^-$ are studied using events collected with the CMS detector in $\sqrt{s}=$ 8 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 20.0 fb$^{-1}$. The forward-backward asymmetry of the muons and the longitudinal polarization of the K$^*$(892)$^+$ meson are determined as a function of the square of the dimuon invariant mass. These are the first results from this exclusive decay mode and are in agreement with a standard model prediction.

1 data table

The measured signal yields, FL, AFB in bins of the dimuon invariant mass squared. The first uncertainty is statistical and the second is systematic.


Evidence for Higgs boson decay to a pair of muons

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-19-006, 2020.
Inspire Record 1815813 DOI 10.17182/hepdata.97042

Evidence for Higgs boson decay to a pair of muons is presented. This result combines searches in four exclusive categories targeting the production of the Higgs boson via gluon fusion, via vector boson fusion, in association with a vector boson, and in association with a top quark-antiquark pair. The analysis is performed using proton-proton collision data at $\sqrt{s}=$ 13 TeV, corresponding to an integrated luminosity of 137 fb$^{-1}$, recorded by the CMS experiment at the CERN LHC. An excess of events over the background expectation is observed in data with a significance of 3.0 standard deviations, where the expectation for the standard model (SM) Higgs boson with mass of 125.38 GeV is 2.5. The combination of this result with that from data recorded at $\sqrt{s} =$ 7 and 8 TeV, corresponding to integrated luminosities of 5.1 and 19.7 fb$^{-1}$, respectively, increases both the expected and observed significances by 1%. The measured signal strength, relative to the SM prediction, is 1.19$^{+0.40}_{-0.39}$ (stat) $^{+0.15}_{-0.14}$ (syst). This result constitutes the first evidence for the decay of the Higgs boson to second generation fermions and is the most precise measurement of the Higgs boson coupling to muons reported to date.

39 data tables

The observed DNN output distribution in the VBF-SR region for data collected in 2016 compared to the post-fit background estimate for the contributing SM processes. The post-fit distributions for the Higgs boson signal produced via ggH and VBF modes with mass of 125.38 GeV are also reported. The predicted backgrounds are obtained from a S+B fit performed across analysis regions and years. The total post-fit and pre-fit uncertainties on the background prediction are also reported.

The observed DNN output distribution in the VBF-SR region for data collected in 2017 compared to the post-fit background estimate for the contributing SM processes. The post-fit distributions for the Higgs boson signal produced via ggH and VBF modes with mass of 125.38 GeV are also reported. The predicted backgrounds are obtained from a S+B fit performed across analysis regions and years. The total post-fit and pre-fit uncertainties on the background prediction are also reported.

The observed DNN output distribution in the VBF-SR region for data collected in 2018 compared to the post-fit background estimate for the contributing SM processes. The post-fit distributions for the Higgs boson signal produced via ggH and VBF modes with mass of 125.38 GeV are also reported. The predicted backgrounds are obtained from a S+B fit performed across analysis regions and years. The total post-fit and pre-fit uncertainties on the background prediction are also reported.

More…

W$^+$W$^-$ boson pair production in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 092001, 2020.
Inspire Record 1814328 DOI 10.17182/hepdata.94259

A measurement of the W$^+$W$^-$ boson pair production cross section in proton-proton collisions at $\sqrt{s} =$ 13 TeV is presented. The data used in this study are collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 35.9 fb$^{-1}$. The W$^+$W$^-$ candidate events are selected by requiring two oppositely charged leptons (electrons or muons). Two methods for reducing background contributions are employed. In the first one, a sequence of requirements on kinematic quantities is applied allowing a measurement of the total production cross section: 117.6 $\pm$ 6.8 pb, which agrees well with the theoretical prediction. Fiducial cross sections are also reported for events with zero or one jet, and the change in the zero-jet fiducial cross section with the jet transverse momentum threshold is measured. Normalized differential cross sections are reported within the fiducial region. A second method for suppressing background contributions employs two random forest classifiers. The analysis based on this method includes a measurement of the total production cross section and also a measurement of the normalized jet multiplicity distribution in W$^+$W$^-$ events. Finally, a dilepton invariant mass distribution is used to probe for physics beyond the standard model in the context of an effective field theory, and constraints on the presence of dimension-6 operators are derived.

8 data tables

Summary of cross sections obtained in the sequential cut analysis. The uncertainty listed is the total uncertainty obtained from the fit to the yields. Same flavor, SF, and different flavor, DF, cross sections are given.

Measured fraction of events after unfolding for $N_J = 0, 1, \geq 2$ jets. The first uncertainty is statistical and the second combines systematic uncertainties from the response matrix and from the background subtraction.

Expected and observed 68% and 95% confidence intervals on the measurement of the Wilson coefficients associated with the three CP-preserving, dimension-6 operators.

More…

A search for bottom-type, vector-like quark pair production in a fully hadronic final state in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 112004, 2020.
Inspire Record 1812970 DOI 10.17182/hepdata.99690

A search is described for the production of a pair of bottom-type vector-like quarks (VLQs), each decaying into a b or $\mathrm{\bar{b}}$ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb$^{-1}$. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in the events. Since the two jets produced in the decay of a highly Lorentz-boosted Higgs or Z boson can merge to form a single jet, nine independent analyses are performed, categorized by the number of observed jets and the reconstructed event mode. No signal in excess of the expected background is observed. Lower limits are set on the VLQ mass at 95% confidence level equal to 1570 GeV in the case where the VLQ decays exclusively to a b quark and a Higgs boson, 1390 GeV for when it decays exclusively to a b quark and a Z boson, and 1450 GeV for when it decays equally in these two modes. These limits represent significant improvements over the previously published VLQ limits.

66 data tables

Measured values of the trigger efficiencies for events with $\HT > 1350\GeV$. The uncertainties are statistical only.

Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).

Reconstructed VLQ mass distributions for simulated signal events with a generated VLQ mass $m_{B} = 1200\GeV$. A moderate requirement of $\chi^{2}$/ndf < 2$ is applied to the events. Mass distributions for 4-jet (left), 5-jet (center), and 6-jet (right) events are shown for the three decay modes: bHbH (upper row), bHbZ (middle row), and bZbZ (lower row).

More…

Evidence for electroweak production of four charged leptons and two jets in proton-proton collisions at $\sqrt {s}$ = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 812 (2021) 135992, 2021.
Inspire Record 1811911 DOI 10.17182/hepdata.95433

Evidence is presented for the electroweak (EW) production of two jets (jj) in association with two Z bosons and constraints on anomalous quartic gauge couplings are set. The analysis is based on a data sample of proton-proton collisions at $\sqrt{s} = $ 13 TeV collected with the CMS detector in 2016-2018, and corresponding to an integrated luminosity of 137 fb$^{-1}$. The search is performed in the fully leptonic final state ZZ $\to$ $\ell\ell\ell'\ell'$, where $\ell,\ell' = $ e, $\mu$. The EW production of two jets in association with two Z bosons is measured with an observed (expected) significance of 4.0 (3.5) standard deviations. The cross sections for the EW production are measured in three fiducial volumes and the result is $\sigma_{\mathrm{EW}}$(pp $\to$ ZZjj $\to$ $\ell\ell\ell'\ell'$jj) = 0.33 $^{+0.11}_{-0.10}$ (stat) $^{+0.04}_{-0.03}$ (syst) fb in the most inclusive volume, in agreement with the standard model prediction of 0.275 $\pm$ 0.021 fb. Measurements of total cross sections for jj production in association with two Z bosons are also reported. Limits on anomalous quartic gauge couplings are derived in terms of the effective field theory operators T0, T1, T2, T8, and T9.

5 data tables

Data from paper Table 3. Measured and expected fiducial cross-sections in the ZZjj inclusive fiducial region.

Data from paper Table 3. Measured and expected fiducial cross-sections in the VBS-enriched loose fiducial region.

Data from paper Table 3. Measured and expected fiducial cross-sections in the VBS-enriched tight fiducial region.

More…

Search for supersymmetry in proton-proton collisions at $\sqrt{s} =$ 13 TeV in events with high-momentum Z bosons and missing transverse momentum

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 09 (2020) 149, 2020.
Inspire Record 1811111 DOI 10.17182/hepdata.96235

A search for new physics in events with two highly Lorentz-boosted Z bosons and large missing transverse momentum is presented. The analyzed proton-proton collision data, corresponding to an integrated luminosity of 137 fb$^{-1}$, were recorded at $\sqrt{s} =$ 13 TeV by the CMS experiment at the CERN LHC. The search utilizes the substructure of jets with large radius to identify quark pairs from Z boson decays. Backgrounds from standard model processes are suppressed by requirements on the jet mass and the missing transverse momentum. No significant excess in the event yield is observed beyond the number of background events expected from the standard model. For a simplified supersymmetric model in which the Z bosons arise from the decay of gluinos, an exclusion limit of 1920 GeV on the gluino mass is set at 95% confidence level. This is the first search for beyond-standard-model production of pairs of boosted Z bosons plus large missing transverse momentum.

14 data tables

Cross section upper limit vs m(GLUINO) for SMS model T5ZZ.

Cross section upper limit vs m(GLUINO) for SMS model T5ZZ.

Cross section upper limit vs m(GLUINO) for SMS model T5ZZ.

More…

Total and differential cross sections of the $\boldsymbol{dp\to {}^3}\textrm{He}\,\boldsymbol{\eta}$ reaction at excess energies between 1 and 15 MeV

Fritzsch, C. ; Barsov, S. ; Burmeister, I. ; et al.
Phys.Rev.C 102 (2020) 044004, 2020.
Inspire Record 1806543 DOI 10.17182/hepdata.99038

New high precision total and differential cross sections are reported for the $dp\to {}^3\textrm{He}\,\eta$ reaction close to threshold. The measurements were performed using the magnetic spectrometer ANKE, which is an internal fixed target facility at the COSY cooler synchrotron. The data were taken for deuteron beam momenta between $3.14641~\textrm{GeV}/c$ and $3.20416~\textrm{GeV}/c$, which corresponds to the range in excess energy $Q$ for this reaction between $1.14~\textrm{MeV}$ and $15.01~\textrm{MeV}$. The normalization was established through the measurement in parallel of deuteron-proton elastic scattering and this was checked through the study of the $dp\to {}^3\textrm{He}\,\pi^0$ reaction. The previously indicated possible change of sign of the slope of the differential cross sections near the production threshold, which could be explained by a rapid variation of the $s$- and $p$-wave interference term, is not confirmed by the new data. The energy dependence of the total cross section and the $90^{\circ}$ slope parameter are well explained by describing the final state interaction in terms of a complex Jost function and the results are significant in the discussion of $\eta$-mesic nuclei. In combination with recently published WASA-at-COSY data [P. Adlarson $et\, al.$, Phys. Lett. B 782, 297 (2018)], a smooth variation of the slope parameter is achieved up to an excess energy of $80.9~\textrm{MeV}$.

4 data tables

Total cross section measurement.

Differential cross section measurement.

Angular asymmetry parameter measurement. The angular asymmetry parameter is defined as slope of the differnetial cross section distribution at COS(THEAT(CM))=0.

More…

Search for decays of the 125 GeV Higgs boson into a Z boson and a $\rho$ or $\phi$ meson

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2020) 039, 2020.
Inspire Record 1806506 DOI 10.17182/hepdata.95908

Decays of the 125 GeV Higgs boson into a Z boson and a $\rho^0$(770) or $\phi$(1020) meson are searched for using proton-proton collision data collected by the CMS experiment at the LHC at $\sqrt{s} = $ 13 TeV. The analysed data set corresponds to an integrated luminosity of 137 fb$^{-1}$. Events are selected in which the Z boson decays into a pair of electrons or a pair of muons, and the $\rho$ and $\phi$ mesons decay into pairs of pions and kaons, respectively. No significant excess above the background model is observed. As different polarization states are possible for the decay products of the Z boson and $\rho$ or $\phi$ mesons, affecting the signal acceptance, scenarios in which the decays are longitudinally or transversely polarized are considered. Upper limits at the 95% confidence level on the Higgs boson branching fractions into Z$\rho$ and Z$\phi$ are determined to be 1.04-1.31% and 0.31-0.40%, respectively, where the ranges reflect the considered polarization scenarios; these values are 740-940 and 730-950 times larger than the respective standard model expectations. These results constitute the first experimental limits on the two decay channels.

2 data tables

Observed and expected 95% CL upper limits on B(H $\rightarrow$ Z$\rho$), for different polarizations.

Observed and expected 95% CL upper limits on B(H $\rightarrow$ Z$\phi$), for different polarizations.


Production of $\omega $ mesons in pp collisions at $\mathbf {\sqrt{s}=7\,\text {TeV}}$

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 1130, 2020.
Inspire Record 1805263 DOI 10.17182/hepdata.99031

The invariant differential cross section of inclusive $\omega(782)$ meson production at midrapidity ($|y|<0.5$) in pp collisions at $\sqrt{s}$ = 7 TeV was measured with the ALICE detector at the LHC over a transverse momentum range of 2 < $p_{\rm{T}}$ < 17 GeV/$c$. The $\omega$ meson was reconstructed via its $\omega\rightarrow\pi^+\pi^-\pi^0$ decay channel. The measured $\omega$ production cross section is compared to various calculations: PYTHIA 8.2 Monash 2013 describes the data, while PYTHIA 8.2 Tune 4C overestimates the data by about 50%. A recent NLO calculation, which includes a model describing the fragmentation of the whole vector-meson nonet, describes the data within uncertainties below 6 GeV/$c$, while it overestimates the data by up to 50% for higher $p_{\rm{T}}$. The $\omega/\pi^0$ ratio is in agreement with previous measurements at lower collision energies and the PYTHIA calculations. In addition, the measurement is compatible with transverse mass scaling within the measured $p_{\rm{T}}$ range and the ratio is constant with $C^{\omega/\pi^{0}}$ = 0.67 $\pm$ 0.03 (stat) $\pm$ 0.04 (sys) above a transverse momentum of 2.5 GeV/$c$.

2 data tables

Invariant differential cross section of OMEGA mesons produced in inelastic pp collisions at center-of-mass energy 7 TeV, the uncertainty of sigma_{MB} of 3.5% is not included in the systematic error.

The measured ratio of cross sections for inclusive OMEGA to PI0 production at a centre-of-mass energy of 7 TeV.


Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-HIG-19-002, 2020.
Inspire Record 1805274 DOI 10.17182/hepdata.100162

Measurement of the fiducial inclusive and differential production cross sections of the Higgs boson in proton-proton collisions at $\sqrt{s} =$ 13 TeV are performed using events where the Higgs boson decays into a pair of W bosons that subsequently decay into a final state with an electron, a muon, and a pair of neutrinos. The analysis is based on data collected with the CMS detector at the LHC during 2016-2018, corresponding to an integrated luminosity of 137 fb$^{-1}$. Production cross sections are measured as a function of the transverse momentum of the Higgs boson and the associated jet multiplicity. The Higgs boson signal is extracted and simultaneously unfolded to correct for selection efficiency and resolution effects using maximum-likelihood fits to the observed distributions in data. The integrated fiducial cross section is measured to be 86.5 $\pm$ 9.5 fb, consistent with the Standard Model expectation of 82.5 $\pm$ 4.2 fb. No significant deviation from the Standard Model expectations is observed in the differential measurements.

5 data tables

The fiducial differential signal strength and cross section in each Higgs pT bin. Both the unregularized and regularized signal strengthes are given. For the regularized case the uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The regularization estimated bias (bias) is also given. The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

The correlation matrix for the ptH measurements, both for the unregularized and regularized fits. The last bin is inclusive.

The fiducial differential signal strength and cross section in each njet bin. The uncertainty breakdown is given in terms of statistical (stat), experimental (exp), theoretical uncertainties on the background (bkg) and on the signal (sig), and the luminosity uncertainty (lumi). The fiducial cross section and its full uncertainty in each bin are also given. The last bin is inclusive.

More…

Evidence for Top Quark Production in Nucleus-Nucleus Collisions

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 125 (2020) 222001, 2020.
Inspire Record 1802092 DOI 10.17182/hepdata.93878

Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10$^{-6}$ seconds, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first-ever evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon centre-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production ($\sigma_\mathrm{t\bar{t}}$) via the decay into charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, $\sigma_\mathrm{t\bar{t}} = $ 2.54 $^{+0.84}_{-0.74}$ and 2.03 $^{+0.71}_{-0.64}$ $\mu$b, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.

1 data table

Inclusive $\mathrm{t\bar{t}}$ cross sections measured with two methods, relying on the leptonic information alone ($2\ell_{\mathrm{OS}}$), and the second one exploits, in addition, the presence of bottom quarks ($2\ell_{\mathrm{OS}}+N_{\mathrm{b-tag}}$), in the combined $\mathrm{e}^+\mathrm{e}^-$, $\mu^+\mu^-$, and $\mathrm{e}^\pm\mu^\mp$ final states in PbPb collisions at 5.02 TeV, and pp results at $\sqrt{\smash[b]{s}}=5.02$ TeV (scaled by $A^2$) from JHEP 03 (2018) 115. The measurements are compared with theoretical predictions at NNLO+NNLL accuracy in QCD. The inner (outer) experimental uncertainty bars include statistical (statistical and systematic, added in quadrature) uncertainties. The inner (outer) theoretical uncertainty bands correspond to nuclear or free-nucleon PDF (PDF and scale, added in quadrature) uncertainties.


Measurement of the azimuthal anisotropy of $\Upsilon$(1S) and $\Upsilon$(2S) mesons in PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys. Lett. B and tables can be found at http://cms-results.web.cern.ch/cms-results/public-results/publications/HIN-19-002 (CMS Public Pages), 2020.
Inspire Record 1801111 DOI 10.17182/hepdata.93880

The second-order Fourier coefficients ($v_2$) characterizing the azimuthal distribution of $\Upsilon$(1S) and $\Upsilon$(2S) mesons arising from PbPb collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV are studied. The $\Upsilon$ mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The data set was collected in 2018 and corresponds to an integrated luminosity of 1.7 nb$^{-1}$. The scalar product method is used to extract the $v_2$ coefficients of the azimuthal distribution. Results are reported for the rapidity range $|y|\lt$ 2.4, with the transverse momentum 0 $\lt p_\mathrm{T} \lt$ 50 GeV/$c$, and in three centrality ranges of 10-30, 30-50 and 50-90%. In contrast to the J/$\psi$ mesons, no azimuthal anisotropy is observed for the $\Upsilon$ mesons.

5 data tables

$v_{2}$ of $\Upsilon(\mathrm{1S})$ mesons as a function of collision centrality.

$v_{2}$ of $\Upsilon(\mathrm{1S})$ and $\Upsilon(\mathrm{2S})$ mesons integrated for 10-90% centrality range.

$v_{2}$ of $\Upsilon(\mathrm{1S})$ as a function of $p_{\mathrm{T}}$ in 10-90% centrality range.

More…

Constraining the Chiral Magnetic Effect with charge-dependent azimuthal correlations in Pb-Pb collisions at $ \sqrt{s_{\mathrm{NN}}} $ = 2.76 and 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 160, 2020.
Inspire Record 1798528 DOI 10.17182/hepdata.97127

Systematic studies of charge-dependent two- and three-particle correlations in Pb-Pb collisions at $\sqrt{\it{s}_\mathrm{{NN}}} = $ 2.76 and 5.02 TeV used to probe the Chiral Magnetic Effect (CME) are presented. These measurements are performed for charged particles in the pseudorapidity ($\eta$) and transverse momentum ($p_{\rm{T}}$) ranges $\left|\eta \right| < 0.8$ and $0.2 < p_{\mathrm{T}} < 5$ GeV/$c$. A significant charge-dependent signal that becomes more pronounced for peripheral collisions is reported for the CME-sensitive correlators $\gamma_{1,1} = \langle \cos (\varphi_{\alpha} +\varphi_{\beta} - 2\Psi_{2}) \rangle$ and $\gamma_{1,-3} = \langle \cos (\varphi_{\alpha} -3\varphi_{\beta} + 2\Psi_{2}) \rangle$. The results are used to estimate the contribution of background effects, associated with local charge conservation coupled to anisotropic flow modulations, to measurements of the CME. A blast-wave parametrisation that incorporates local charge conservation tuned to reproduce the centrality dependent background effects is not able to fully describe the measured $\gamma_{1,1}$. Finally, the charge and centrality dependence of mixed-harmonics three-particle correlations, of the form $\gamma_{1,2} = \langle \cos (\varphi_{\alpha} +2\varphi_{\beta} - 3\Psi_{3}) \rangle$, which are insensitive to the CME signal, verify again that background contributions dominate the measurement of $\gamma_{1,1}$.

11 data tables

2-particle integrated correlators

2-particle differential correlator versus pT difference

2-particle differential correlator versus average pT

More…

J/$\psi$ elliptic and triangular flow in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 10 (2020) 141, 2020.
Inspire Record 1798507 DOI 10.17182/hepdata.99234

The inclusive J/$\psi$ elliptic ($v_2$) and triangular ($v_3$) flow coefficients measured at forward rapidity (2.5 $<y<$ 4) and the $v_2$ measured at midrapidity ($|y|<$ 0.9) in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV using the ALICE detector at the LHC are reported. The entire Pb-Pb data sample collected during Run 2 is employed, amounting to an integrated luminosity of 750 $\mu$b$^{-1}$ at forward rapidity and 93 $\mu$b$^{-1}$ at midrapidity. The results are obtained using the scalar product method and are reported as a function of transverse momentum $p_{\rm T}$ and collision centrality. At midrapidity, the J/$\psi$ $v_2$ is in agreement with the forward rapidity measurement. The centrality averaged results indicate a positive J/$\psi$ $v_3$ with a significance of more than 5$\sigma$ at forward rapidity in the $p_{\rm T}$ range $2<p_{\rm T}<5$ GeV/$c$. The forward rapidity $v_2$, $v_3$, and $v_3$/$v_2$ results at low and intermediate $p_{\rm T}$ ($p_{\rm T} \lesssim 8$ GeV/$c$) exhibit a mass hierarchy when compared to pions and D mesons, while converging into a species-independent curve at higher $p_{\rm T}$. At low and intermediate $p_{\rm T}$, the results could be interpreted in terms of a later thermalization of charm quarks compared to light quarks, while at high $p_{\rm T}$, path-length dependent effects seem to dominate. The J/$\psi$ $v_2$ measurements are further compared to a microscopic transport model calculation. Using a simplified extension of the quark scaling approach involving both light and charm quark flow components, it is shown that the D-meson $v_{\rm n}$ measurements can be described based on those for charged pions and J/$\psi$ flow.

19 data tables

Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 0$-$10.0 %

Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 10$-$30 %

Inclusive J/$\psi$ $v_2$ as a function of $p_{T}$ in the centrality interval 30$-$50 %

More…

Measurement of isolated photon-hadron correlations in $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV $pp$ and $p$-Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 102 (2020) 044908, 2020.
Inspire Record 1798523 DOI 10.17182/hepdata.98564

This paper presents isolated photon-hadron correlations using pp and p-Pb data collected by the ALICE detector at the LHC. For photons with |$\eta$| < 0.67 and 12 < $p_{\rm{T}}$ < 40 GeV/$c$, the associated yield of charged particles in the range |$\eta$| < 0.80 and 0.5 < $p_{\rm{T}}$ < 10 GeV/$c$ is presented. These momenta are much lower than previous measurements at the LHC. No significant difference between pp and p-Pb is observed, with PYTHIA 8.2 describing both data sets within uncertainties. This measurement constrains nuclear effects on the parton fragmentation in p-Pb collisions, and provides a benchmark for future studies of Pb-Pb collisions.

5 data tables

$\gamma^\mathrm{iso}$-hadron correlation functions for pp (red) and p$-$Pb (blue) data at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The different panels represent three different $z_\mathrm{T}$ bins. The correlation functions are projected over the range $|\Delta\eta| < 1.2$. The darker bands at zero represents the uncertainty from the underlying event estimation in pp and p$-$Pb. The underlying event was estimated over the range $|0.4 <\Delta\varphi < 1.6|$. The vertical bars represent statistical uncertainties only. The boxes indicate the systematic uncertainties. The dashed green line represents the $\gamma^\mathrm{iso}$-hadron correlation function obtained with PYTHIA 8.2 Monash Tune. '$p$' is the p-value for the hypothesis that the pp and p$-$Pb data follow the same true correlation function.

$\gamma^\mathrm{iso}$-hadron correlation functions for pp (red) and p$-$Pb (blue) data at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The different panels represent three different $z_\mathrm{T}$ bins. The correlation functions are projected over the range $|\Delta\eta| < 1.2$. The darker bands at zero represents the uncertainty from the underlying event estimation in pp and p$-$Pb. The underlying event was estimated over the range $|0.4 <\Delta\varphi < 1.6|$. The vertical bars represent statistical uncertainties only. The boxes indicate the systematic uncertainties. The dashed green line represents the $\gamma^\mathrm{iso}$-hadron correlation function obtained with PYTHIA 8.2 Monash Tune. '$p$' is the p-value for the hypothesis that the pp and p$-$Pb data follow the same true correlation function.

$\gamma^\mathrm{iso}$-hadron correlation functions for pp (red) and p$-$Pb (blue) data at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The different panels represent three different $z_\mathrm{T}$ bins. The correlation functions are projected over the range $|\Delta\eta| < 1.2$. The darker bands at zero represents the uncertainty from the underlying event estimation in pp and p$-$Pb. The underlying event was estimated over the range $|0.4 <\Delta\varphi < 1.6|$. The vertical bars represent statistical uncertainties only. The boxes indicate the systematic uncertainties. The dashed green line represents the $\gamma^\mathrm{iso}$-hadron correlation function obtained with PYTHIA 8.2 Monash Tune. '$p$' is the p-value for the hypothesis that the pp and p$-$Pb data follow the same true correlation function.

More…

Elliptic and triangular flow of (anti)deuterons in Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 102 (2020) 055203, 2020.
Inspire Record 1798556 DOI 10.17182/hepdata.99901

The measurements of the (anti)deuterons elliptic flow ($v_2$) and the first measurements of triangular flow ($v_3$) in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collisions $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV are presented. A mass ordering at low transverse momentum ($p_{\rm T}$) is observed when comparing these measurements with those of other identified hadrons, as expected from relativistic hydrodynamics. The measured (anti)deuterons $v_2$ lies between the predictions from the simple coalescence and blast-wave models, which provide a good description of the data only for more peripheral and for more central collisions, respectively. The mass number scaling, which is violated for $v_2$, is approximately valid for the (anti)deuterons $v_3$. The measured $v_2$ and $v_3$ are also compared with the predictions from a coalescence approach with phase-space distributions of nucleons generated by iEBE-VISHNU with AMPT initial conditions coupled with UrQMD, and from a dynamical model based on relativistic hydrodynamics coupled to the hadronic afterburner SMASH. The model predictions are consistent with the data within the uncertainties in mid-central collisions, while a deviation is observed in central centrality intervals.

11 data tables

v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 0-5%.

v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 5-10%.

v2 as a function of pT for Pb-Pb collisions at \sqrt{s_NN} = 5.02 TeV and centrality 10-20%.

More…

Dielectron production in proton-proton and proton-lead collisions at $\sqrt{s_{NN}}=$ 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 102 (2020) 055204, 2020.
Inspire Record 1797621 DOI 10.17182/hepdata.98625

The first measurements of dielectron production at midrapidity ($|\eta_{c}|<0.8$) in proton-proton and proton-lead collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV at the LHC are presented. The dielectron cross section is measured with the ALICE detector as a function of the invariant mass $m_{\rm{T,ee}}$ and the pair transverse momentum $p_{\rm{T,ee}}$ in the ranges $m_{\rm{T,ee}}$ < 3.5 GeV/$c^{2}$ and $m_{\rm{T,ee}}$ < 8.0 GeV/$c^{2}$, in both collision systems. In proton-proton collisions, the charm and beauty cross sections are determined at midrapidity from a fit to the data with two different event generators. This complements the existing dielectron measurements performed at $\sqrt{s}$ = 7 and 13 TeV. The slope of the $\sqrt{s}$ dependence of the three measurements is described by FONLL calculations. The dielectron cross section measured in proton-lead collisions is in agreement, within the current precision, with the expected dielectron production without any nuclear matter effects for $\rm{e}^{+}\rm{e}^{-}$ pairs from open heavy-flavor hadron decays. For the first time at LHC energies, the dielectron production in proton-lead and proton-proton collisions are directly compared at the same $\sqrt{s_{\rm{NN}}}$ via the dielectron nuclear modification factor $R_{\rm{pPb}}$. The measurements are compared to model calculations including cold nuclear matter effects, or additional sources of dielectrons from thermal radiation.

9 data tables

Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 5.02 TeV as a function of $m_{\rm ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.

Inclusive $e^+e^-$ cross section in p-Pb collisions at $\sqrt{s}$ = 5.02 TeV as a function of $m_{\rm ee}$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.

Inclusive $e^+e^-$ cross section in pp collisions at $\sqrt{s}$ = 5.02 TeV as a function of $p_{\rm T,ee}$ for $0.5 < m_{\rm ee} < 1.1$ GeV/$c$. Electrons are measured within $|\eta_{\rm e}| < 0.8$ and $p_{\rm T,e} > 0.2$ GeV/$c$.

More…

A new laboratory to study hadron-hadron interactions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2020-091, 2020.
Inspire Record 1797617 DOI 10.17182/hepdata.100195

One of the big challenges for nuclear physics today is to understand, starting from first principles, the effective interaction between hadrons with different quark content. First successes have been achieved utilizing techniques to solve the dynamics of quarks and gluons on discrete space-time lattices. Experimentally, the dynamics of the strong interaction have been studied by scattering hadrons off each other. Such scattering experiments are difficult or impossible for unstable hadrons and hence, high quality measurements exist only for hadrons containing up and down quarks. In this work, we demonstrate that measuring correlations in the momentum space between hadron pairs produced in ultrarelativistic proton-proton collisions at the CERN LHC provides a precise method to obtain the missing information on the interaction dynamics between any pair of unstable hadrons. Specifically, we discuss the case of the interaction of baryons containing strange quarks (hyperons). We demonstrate for the first time how, using precision measurements of p-$\Omega^{-}$ correlations, the effect of the strong interaction for this hadron-hadron pair can be studied and compared with predictions from lattice calculations.

2 data tables

The p--$\Xi^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Xi}^{+}$ correlation function.

The p--$\Omega^{-}$ $\oplus$ $\overline{\mathrm{p}}$--$\overline{\Omega}^{+}$ correlation function.


Multiplicity dependence of J/$\psi$ production at midrapidity in pp collisions at $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 810 (2020) 135758, 2020.
Inspire Record 1797445 DOI 10.17182/hepdata.96306

Measurements of the inclusive J/$\psi$ yield as a function of charged-particle pseudorapidity density $\rm{d}N_\rm{ch}/\rm{d}\eta$ in pp collisions at $\sqrt{s}$ = 13 TeV with ALICE at the LHC are reported. The J/$\psi$ meson yield is measured at midrapidity ($|y|<0.9$) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity ($|\eta|<1$) and at forward rapidity ($-3.7<\eta<-1.7$ and $2.8<\eta<5.1$); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/$\psi$ yield with normalized $\rm{d}N/\rm{d}\eta$ is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively.

6 data tables

$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ integrated, event selection SPD

$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ integrated, event selection V0

$N_{J/psi}/<N_{J/\psi}> / N_{ch}/<N_{ch}>$, $|y^{J/\psi}|<0.9$, $p_{T}^{J/\psi}$ 0-4 and 4-8 GeV/c, event selection SPD

More…

Measurement of the low-energy antideuteron inelastic cross section

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.Lett. 125 (2020) 162001, 2020.
Inspire Record 1797442 DOI 10.17182/hepdata.96844

In this Letter, we report the first measurement of the antideuteron inelastic cross section at low particle momenta, covering a range of $0.3 \leq p < 4$ GeV/$c$. The measurement is carried out using p-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV, recorded with the ALICE detector at the CERN LHC and utilizing the detector material as an absorber for antideuterons and antiprotons. The extracted raw primary antiparticle-to-particle ratios are compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of antiparticles through the detector material. The analysis of the raw primary (anti)proton spectra serves as a benchmark for this study, since their hadronic interaction cross sections are well constrained experimentally. The first measurement of the antideuteron inelastic cross section averaged over the ALICE detector material with atomic mass numbers $\langle A \rangle$ = 17.4 and 31.8 is obtained. The measured inelastic cross section points to a possible excess with respect to the Glauber model parameterization in the lowest momentum interval of $0.3 \leq p < 0.47$ GeV/$c$ up to a factor 2.1. This result is relevant for the understanding of antimatter propagation and the contributions to antinuclei production from cosmic ray interactions within the interstellar medium. In addition, the momentum range covered by this measurement is of particular importance to evaluate signal predictions for indirect dark-matter searches.

16 data tables

Raw primary antiproton-to-proton ratio as a function of the momentum p_primary.

Raw primary antiproton-to-proton ratio from Geant4-based MC simulations as a function of the momentum p_primary.

Raw primary antideuteron-to-deuteron ratio as a function of the momentum p_primary.

More…

Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 09 (2020) 076, 2020.
Inspire Record 1797444 DOI 10.17182/hepdata.97372

Measurement of Z-boson production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV and Pb-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV is reported. It is performed in the dimuon decay channel, through the detection of muons with pseudorapidity $-4 < \eta_{\mu} < -2.5$ and transverse momentum $p_{\rm T}^{\mu} > 20$ GeV/$c$ in the laboratory frame. The invariant yield and nuclear modification factor are measured for opposite-sign dimuons with invariant mass $60 < m^{\mu\mu} < 120$ GeV$c^2$ and rapidity $2.5 < y_{cms}^{\mu\mu} < 4$. They are presented as a function of rapidity and, for the Pb-Pb collisions, of centrality as well. The results are compared with theoretical calculations, both with and without nuclear modifications to the Parton Distribution Functions (PDFs). In p-Pb collisions the center-of-mass frame is boosted with respect to the laboratory frame, and the measurements cover the backward ($-4.46< y_{cms}^{\mu\mu}<-2.96$) and forward ($2.03< y_{cms}^{\mu\mu}<3.53$) rapidity regions. For the p-Pb collisions, the results are consistent within experimental and theoretical uncertainties with calculations that include both free-nucleon and nuclear-modified PDFs. For the Pb-Pb collisions, a $3.4\sigma$ deviation is seen in the integrated yield between the data and calculations based on the free-nucleon PDFs, while good agreement is found once nuclear modifications are considered.

5 data tables

Differential fiducial cross section in p-Pb

Integrated fiducial invariant yield in Pb-Pb

Rapidity differential fiducial invariant yield in Pb-Pb

More…

Production of light-flavor hadrons in pp collisions at $\sqrt{s}$ = 7 and $\sqrt{s}$ = 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2020-059, 2020.
Inspire Record 1797443 DOI 10.17182/hepdata.100303

The production of $\pi^{\pm}$, $\rm{K}^{\pm}$, $\rm{K}^{0}_{S}$, $\rm{K}*(892)^{0}$, $\rm{p}$, $\phi(1020)$, $\Lambda$, $\Xi^{-}$, $\Omega^{-}$, and their antiparticles was measured in inelastic proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV at midrapidity ($|y|<0.5$) as a function of transverse momentum ($p_{\rm{T}}$) using the ALICE detector at the CERN LHC. Furthermore, the single-particle $p_{\rm{T}}$ distributions of $\rm{K}^{0}_{S}$, $\Lambda$, and $\overline{\Lambda}$ in inelastic pp collisions at $\sqrt{s}$ = 7 TeV are reported here for the first time. The $p_{\rm{T}}$ distributions are studied at midrapidity within the transverse momentum range $0\leq p_{\rm{T}}\leq20$ GeV/$c$, depending on the particle species. The $p_{\rm{T}}$ spectra, integrated yields, and particle yield ratios are discussed as a function of collision energy and compared with measurements at lower $\sqrt{s}$ and with results from various general-purpose QCD-inspired Monte Carlo models. A hardening of the spectra at high $p_{\rm{T}}$ with increasing collision energy is observed, which is similar for all particle species under study. The transverse mass and $x_{\rm{T}}\equiv2p_{\rm{T}}/\sqrt{s}$ scaling properties of hadron production are also studied. As the collision energy increases from $\sqrt{s}$ = 7 to 13 TeV, the yields of non- and single-strange hadrons normalized to the pion yields remain approximately constant as a function of $\sqrt{s}$, while ratios for multi-strange hadrons indicate enhancements. The $p_{\rm{T}}$-differential cross sections of $\pi^{\pm}$, $\rm{K}^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) are compared with next-to-leading order perturbative QCD calculations, which are found to overestimate the cross sections for $\pi^{\pm}$ and $\rm{p}$ ($\overline{\rm{p}}$) at high $p_{\rm{T}}$.

47 data tables

Transverse momentum spectrum of $\pi^{+} + \pi^{-}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

Transverse momentum spectrum of $K^{+} + K^{-}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

Transverse momentum spectrum of $K^{0}_{S}$ measured at midrapidity ($|y|<0.5$) in inelastic pp collisions at $\sqrt{s}$ = 13 TeV. The normalization uncertainty of $\pm2.6\%$ is excluded.

More…

Charged-pion production in $\mathbf {Au+Au}$ collisions at $\sqrt{\mathbf {s}_{\mathbf {NN}}} = 2.4~{\mathbf {GeV}}$: HADES Collaboration

The HADES collaboration Adamczewski-Musch, J. ; Arnold, O. ; Behnke, C. ; et al.
Eur.Phys.J.A 56 (2020) 259, 2020.
Inspire Record 1796710 DOI 10.17182/hepdata.97368

We present high-statistic data on charged pion emission from Au+Au collisions at $\sqrt{s_{\rm{NN}}}$ = 2.4 GeV (corresponding to $E_{beam}$ = 1.23 A GeV) in four centrality classes in the range 0 - 40$\%$ of the most central collisions. The data are analyzed as a function of transverse momentum, transverse mass, rapidity, and polar angle. Pion multiplicity per participating nucleon decreases moderately with increasing centrality. The polar angular distributions are found to be non-isotropic even for the most central event class. Our results on pion multiplicity fit well into the general trend of the world data, but undershoot by $2.5 \sigma$ data from the FOPI experiment measured at slightly lower beam energy. We compare our data to state-of-the-art transport model calculations (PHSD, IQMD, PHQMD, GiBUU and SMASH) and find substantial differences between the measurement and the results of these calculations.

11 data tables

Mid-rapidity and forward rapidity transverse momentum distributions ($p_{t}$) for charged pion for the 10$\%$most central events.

Reduced transverse mass distribution for negatively charged pions in rapidity bins of $\Delta y_{cm}$ = 0.1width between -0.65 and 0.75 for 0-10$\%$ most central events. The most backward rapidity is shown unscaledwhile for following rapidity slices are scaled up by succesive factors of 10.

Reduced transverse mass distribution for positively charged pions in rapidity bins of $\Delta y_{cm}$ = 0.1width between -0.65 and 0.75 for 0-10$\%$ most central events. The most backward rapidity is shown unscaledwhile for following rapidity slices are scaled up by succesive factors of 10.

More…

Search for a light charged Higgs boson in the H$^\pm$ $\to $ cs channel in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.D 102 (2020) 072001, 2020.
Inspire Record 1796727 DOI 10.17182/hepdata.94261

A search is conducted for a low-mass charged Higgs boson produced in a top quark decay and subsequently decaying into a charm and a strange quark. The data sample was recorded in proton-proton collisions at $\sqrt{s} =$ 13 TeV by the CMS experiment at the LHC and corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The search is performed in the process of top quark pair production, where one top quark decays to a bottom quark and a charged Higgs boson, and the other to a bottom quark and a W boson. With the W boson decaying to a charged lepton (electron or muon) and a neutrino, the final state comprises an isolated lepton, missing transverse momentum, and at least four jets, of which two are tagged as b jets. To enhance the search sensitivity, one of the jets originating from the charged Higgs boson is required to satisfy a charm tagging selection. No significant excess beyond standard model predictions is found in the dijet invariant mass distribution. An upper limit in the range 1.68-0.25% is set on the branching fraction of the top quark decay to the charged Higgs boson and bottom quark for a charged Higgs boson mass between 80 and 160 GeV.

3 data tables

Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) for the muon channel after the individual charm tagging categories have been combined.

Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) for the electron channel after the individual charm tagging categories have been combined.

Expected and observed 95% CL exclusion limits in % on BR(t->H+ b) after the individual charm tagging categories and the muon and electron channels have been combined.


Dependence of inclusive jet production on the anti-$k_\mathrm{T}$ distance parameter in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 12 (2020) 082, 2020.
Inspire Record 1795080 DOI 10.17182/hepdata.95241

The dependence of inclusive jet production in proton-proton collisions with a center-of-mass energy of 13 TeV on the distance parameter $R$ of the anti-$k_\mathrm{T}$ algorithm is studied using data corresponding to integrated luminosities up to 35.9 fb$^{-1}$ collected by the CMS experiment in 2016. The ratios of the inclusive cross sections as functions of transverse momentum $p_\mathrm{T}$ and rapidity $y$, for $R$ in the range 0.1 to 1.2 to those using $R = $ 0.4 are presented in the region 84 $\lt$ $p_\mathrm{T}$ $\lt$ 1588 GeV and $|y|$ $\lt$ 2.0. The results are compared to calculations at leading and next-to-leading order in the strong coupling constant using different parton shower models. The variation of the ratio of cross sections with $R$ is well described by calculations including a parton shower model, but not by a leading-order quantum chromodynamics calculation including nonperturbative effects. The agreement between the data and the theoretical predictions for the ratios of cross sections is significantly improved when next-to-leading order calculations with nonperturbative effects are used.

88 data tables

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range |y|<0.5. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range 0.5<|y|<1.0. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

Ratio of differential cross section of AK1 jets with respect to AK4 jets a function of jet PT in the rapidity range 1.0<|y|<1.5. The nonperturbative correction can be used to scale fixed-order theory prediction to compare to data at particle level.

More…