Measurement of hadron and lepton-pair production at 161-GeV < s**(1/2) < 172-GeV at LEP.

The L3 collaboration Acciarri, M. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 407 (1997) 361-376, 1997.
Inspire Record 443802 DOI 10.17182/hepdata.47468

We report on measurements of e + e − annihilation into hadrons and lepton pairs. The data have been taken with the L3 detector at LEP at center-of-mass energies between 161 GeV and 172 GeV. In a data sample corresponding to 21.2 pb −1 of integrated luminosity 2728 hadronic and 868 lepton-pair events are selected. The measured cross sections and leptonic forward-backward asymmetries agree well with the Standard Model predictions.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Determination of alpha-s from hadronic event shapes measured on the Z0 resonance

The L3 collaboration Adrian, O. ; Aguilar-Benitez, M. ; Ahlen, S. ; et al.
Phys.Lett.B 284 (1992) 471-481, 1992.
Inspire Record 334951 DOI 10.17182/hepdata.29157

We present a study of the global event shape variables thrust and heavy jet mass, of energy-energy correlations and of jet multiplicities based on 250 000 hadronic Z 0 decays. The data are compared to new QCD calculations including resummation of leading and next-to-leading logarithms to all orders. We determine the strong coupling constant α s (91.2 GeV) = 0.125±0.003 (exp) ± 0.008 (theor). The first error is the experimental uncertainty. The second error is due to hadronization uncertainties and approximations in the calculations of the higher order corrections.

3 data tables

Measured EEC distribution corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Measured average jet multiplicities for the K_PT algorithm. All numbers are corrected for detector effects and photon radiation. Errors are combined statistical and systematic uncertainties.

Value of strong coupling constant, alpha_s, determined from the data. First error is experimental, the second is theoretical.


The Total Cross-section for Electron - Positron Annihilation Into Hadron Final States in the $\Upsilon$ Energy Region

The CLEO collaboration Giles, R. ; Hassard, J. ; Hempstead, M. ; et al.
Phys.Rev.D 29 (1984) 1285, 1984.
Inspire Record 193577 DOI 10.17182/hepdata.23768

We report measurements made with the CLEO detector at the Cornell Electron Storage Ring (CESR) of the total cross section for e+e−→hadrons at the ϒ(1S), ϒ(2S), and ϒ(3S), and in the nearby nonresonant continuum. We find R=3.77±0.06 (statistical) ± 0.24 (systematic) for the ratio of the nonresonant hadronic cross section to the cross section for muon-pair production at a center-of-mass total energy W=10.4 GeV. For the leptonic decay widths Γee of the ϒ(1S), ϒ(2S), and ϒ(3S) we obtain 1.30±0.05±0.08, 0.52±0.03±0.04, and 0.42±0.04±0.03 keV, respectively.

1 data table

No description provided.


OBSERVATION OF SCALING OF THE PHOTON STRUCTURE FUNCTION F2 (gamma) AT LOW Q**2

The TPC/Two Gamma collaboration Aihara, H. ; Alston-Garnjost, M. ; Avery, R.E. ; et al.
Phys.Rev.Lett. 58 (1987) 97, 1987.
Inspire Record 233595 DOI 10.17182/hepdata.20136

The structure function F2γ for a quasireal photon has been measured in the reaction ee→eeX for Q2 in the range 0.2<Q2<7 GeV2, by use of 9200 multihadron events obtained with the TPC/Two-Gamma detector at the SLAC storage ring PEP. The data have been corrected for detector effects by a regularized unfolding procedure and are presented as F2γ(x,Q2). The structure function shows scaling in the region 0.3<Q2<1.6 GeV2, x<0.3, and rises for higher Q2 and x>0.1. Below Q2=0.3 GeV2, scaling breaks down in accordance with the finite cross-section bound for real photons.

4 data tables

Data read from graph.

Data read from graph.

Data read from graph.

More…

Measurement of the Parameters of the $\psi^{\prime\prime}$(3770) Resonance

Abrams, G.S. ; Alam, M.S. ; Blocker, C.A. ; et al.
Phys.Rev.D 21 (1980) 2716, 1980.
Inspire Record 142644 DOI 10.17182/hepdata.24185

We present a measurement of the cross section for hadron production by e+e− annihilation in the vicinity of the previously observed resonance near 3.77 GeV. The data are used to determine the parameters of the ψ(3770) resonance. The values found are: mass, 3764±5 MeV/c2, total width, 23.5±5 MeV, and partial width to electron pairs, 276±50 eV.

3 data tables

THESE RESULTS ARE ALSO IN THE THESIS OF R. H. SCHINDLER, SLAC-219 (1979), THE RECORD OF WHICH CONTAINS THE TABULATED CROSS SECTIONS.

BREIT-WIGNER RESONANCE PLUS BACKGROUND FIT TO RADIATIVELY CORRECTED DATA YIELDS RESONANCE MASS OF 3764 +- 5 MEV, TOTAL WIDTH OF 23.5 +- 5 MEV AND PARTIAL WIDTH TO ELECTRON PAIRS OF 276 +- 50 EV.

PEAK CROSS SECTION FOR D MESON PAIR PRODUCTION AT PSI(3770) RESONANCE. J/PSI, PSI(3684) AND CONTINUUM BACKGROUND (R=2.5) SUBTRACTED.


Measurement of inclusive production of light meson resonances in hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 298 (1993) 236-246, 1993.
Inspire Record 342800 DOI 10.17182/hepdata.29001

A study of inclusive production of the meson resonances ρ 0 , K ∗0 (892), ƒ 0 (975) and ƒ 2 (1270) in hadronic decays of the Z 0 is presented. The measured mean meson multiplicity per hadronic event is 0.83 ± 0.14 for the ρ 0 0.64 ± 0.24 for the K ∗0 (892), 0.10 ± 0.04 for the ƒ 0 (975) in the momentum range p > 0.05 p beam ( x p > 0.05) and 0.11 ± 0.05 for the ƒ 2 (1270) for x p > 0.1 . These values and the corresponding differential cross sections ( 1 σ hadr ) d σ d x p for the vector mesons are in good agreement with the predictions of the JETSET 7.3 PS and HERWIG 5.4 models. The ƒ 2 (1270) production is overestimated by HERWIG but its x p -shape is correctly reproduced. The measured ratios of the production cross sections σ(ƒ 2 (1270)) σ(ρ 0 ) = 0.22 ± 0.08 and σ(ƒ 2 (1270)) σ(ƒ 0 (975)) = 3 −1 +7 for x p > 0.1 are consistent with the results obtained in hadronic reactions.

10 data tables

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

Average multiplicity per hadronic event. Extrapolation to x = 0 using the x shape predicted by JETSET 7.3 PS.

More…

THRUST DISTRIBUTIONS AND DECAYS OF THE UPSILON BOUND STATES

Peterson, D. ; Bohringer, T. ; Franzini, P. ; et al.
Phys.Lett.B 114 (1982) 277-281, 1982.
Inspire Record 181188 DOI 10.17182/hepdata.30893

We have studied the topologies of hadronic events in e + e - annihilation data taken in the region of the upsilon resonances with the non-magnetic CUSB detectors at CESR. Using a thrust-like variable we compare the decay of ϒ, ϒ′ and ϒPrime; find for ϒ″ a significant excess of high thrust events, which we interpret as evidence for electric dipole transitions.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of alpha-s from energy-energy correlations at the Z0 resonance

The SLD collaboration Abe, K. ; Abt, I. ; Ash, W.W. ; et al.
Phys.Rev.D 50 (1994) 5580-5590, 1994.
Inspire Record 373005 DOI 10.17182/hepdata.17744

We have determined the strong coupling $\as$ from a comprehensive study of energy-energy correlations ($EEC$) and their asymmetry ($AEEC$) in hadronic decays of $Z~0$ bosons collected by the SLD experiment at SLAC. The data were compared with all four available predictions of QCD calculated up to $\Oa2$ in perturbation theory, and also with a resummed calculation matched to all four of these calculations. We find large discrepancies between $\as$ values extracted from the different $\Oa2$ calculations. We also find a large renormalization scale ambiguity in $\as$ determined from the $EEC$ using the $\Oa2$ calculations; this ambiguity is reduced in the case of the $AEEC$, and is very small when the matched calculations are used. Averaging over all calculations, and over the $EEC$ and $AEEC$ results, we obtain $\asz=0.124~{+0.003}_{-0.004} (exp.) \pm 0.009 (theory).$

5 data tables

Statistical errors only.

Statistical errors only.

ALPHAS from the EEC O(ALPHAS**2) measurement.

More…

A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…

A Measurement of D meson production in Z0 hadronic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 59 (1993) 533-546, 1993.
Inspire Record 356732 DOI 10.17182/hepdata.14375

A study of the fragmentation properties of charm and bottom quarks intoD mesons is presented. From 263 700Z0 hadronic decays collected in 1991 with the DELPHI detector at the LEP collider,D0,D+ andD*+ are reconstructed in the modesK−π+,K−π+K+ andD0π+ followed byD0→K−π+, respectively. The fractional decay widths\(\Gamma {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} \mathord{\left/ {\vphantom {{(Z^0\to {D \mathord{\left/ {\vphantom {D {\bar D}}} \right. \kern-\nulldelimiterspace} {\bar D}}X)} {\Gamma _h }}} \right. \kern-\nulldelimiterspace} {\Gamma _h }}\) are determined, and first results are presented for the production ofD mesons from\(c\bar c\) and\(b\bar b\) events separately. The average energy fraction ofD*± in charm quark fragmentation is found to be 〈XE(D*)〉c=0.487±0.015 (stat)±0.005 (sys.). Assuming that the fraction ofDs and charm-baryons produced at LEP is similar to that around 10 GeV, theZ0 partial width into charm quark pairs is determined to beΓc/Γh=0.187±0.031 (stat)±0.023 (sys). The probability for ab quark to fragment into\(\bar B_s \) orb-baryons is inferred to be 0.268±0.094 (stat)±0.100 (sys) from the measured probability that it fragments into a\(\bar B^0 \) orB−.

6 data tables

Using full data sample.

Using full data sample with proper time > 1 ps to enrich (b bbar) content.

Data with Delta(L) > 1.

More…