Multiplicity of Charged Particles in 800-{GeV} $p p$ Interactions

The LEBC-MPS collaboration Ammar, R. ; Aziz, T. ; Banerjee, S. ; et al.
Phys.Lett.B 178 (1986) 124-128, 1986.
Inspire Record 231133 DOI 10.17182/hepdata.6558

Results are reported concerning the charged-particle multiplicity distribution obtained in an exposure of the high-resolution hydrogen bubble chamber LEBC to a beam of 800 GeV protons at the Fermilab MPS. This is the first time that such data have been available at this energy. The distribution of the number n ch of charged particles produced in inelastic interactions obeys KNO-scaling. The average multiplicity is 〈 n ch 〉 = 10.26±0.15. For n ch ⩾8 the data can be well fitted to a negative binomial. The difference between the overall experimental multiplicity distribution and that resulting from the latter fit is in agreement with the contribution expected from diffractive processes.

5 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 889 (2014) 486-548, 2014.
Inspire Record 1312171 DOI 10.17182/hepdata.68910

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.

6 data tables

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

More…

Study of the $\Lambda$-$\Lambda$ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 797 (2019) 134822, 2019.
Inspire Record 1735349 DOI 10.17182/hepdata.90845

This work presents new constraints on the existence and the binding energy of a possible $\Lambda$-$\Lambda$ bound state, the H-dibaryon, derived from $\Lambda$-$\Lambda$ femtoscopic measurements by the ALICE collaboration. The results are obtained from a new measurement using the femtoscopy technique in pp collisions at $\sqrt{s}=13$ TeV and p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV, combined with previously published results from p-Pb collisions at $\sqrt{s}=7$ TeV. The $\Lambda$-$\Lambda$ scattering parameter space, spanned by the inverse scattering length $f_0^{-1}$ and the effective range $d_0$, is constrained by comparing the measured $\Lambda$-$\Lambda$ correlation function with calculations obtained within the Lednicky model. The data are compatible with hypernuclei results and lattice computations, both predicting a shallow attractive interaction, and permit to test different theoretical approaches describing the $\Lambda$-$\Lambda$ interaction. The region in the $(f_0^{-1},d_0)$ plane which would accommodate a $\Lambda$-$\Lambda$ bound state is substantially restricted compared to previous studies. The binding energy of the possible $\Lambda$-$\Lambda$ bound state is estimated within an effective-range expansion approach and is found to be $B_{\Lambda\Lambda}=3.2^{+1.6}_{-2.4}\mathrm{(stat)}^{+1.8}_{-1.0}\mathrm{(syst)}$ MeV.

8 data tables

p-p correlation function in p-p collisions at $\sqrt{s}=13$ TeV.

$\Lambda$-$\Lambda$ correlation function in p-p collisions at $\sqrt{s}=13$ TeV.

$\Lambda$-$\Lambda$ correlation function in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=5.02$ TeV.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…

Proton-proton elastic scattering at the LHC energy of {\surd} = 7 TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 95 (2011) 41001, 2011.
Inspire Record 922651 DOI 10.17182/hepdata.59485

Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at {\surd}s = 7 TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (sbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of d t = 0.1GeV p|t|. In this letter, first results of the differential cross section are presented covering a |t|-range from 0.36 to 2.5GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6{\pm}0.5stat {\pm}0.4syst)GeV-2, followed by a significant diffractive minimum at |t| = (0.53{\pm}0.01stat{\pm}0.01syst)GeV2. For |t|-values larger than ~ 1.5GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8_\pm} 0.3stat{\pm}0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.

1 data table

The measured differential elastic cross section. Data from the tabulation in CERN-PH-EP-2012-239.


Measurement of proton-proton elastic scattering and total cross-section at S**(1/2) = 7-TeV

The TOTEM collaboration Antchev, G. ; Aspell, P. ; Atanassov, I. ; et al.
EPL 101 (2013) 21002, 2013.
Inspire Record 1220862 DOI 10.17182/hepdata.66456

At the LHC energy of $\sqrt s = 7\,{\mathrm { TeV}}$ , under various beam and background conditions, luminosities, and Roman Pot positions, TOTEM has measured the differential cross-section for proton-proton elastic scattering as a function of the four-momentum transfer squared t. The results of the different analyses are in excellent agreement demonstrating no sizeable dependence on the beam conditions. Due to the very close approach of the Roman Pot detectors to the beam center (≈5σ(beam)) in a dedicated run with β* = 90 m, |t|-values down to 5·10(−)(3) GeV(2) were reached. The exponential slope of the differential elastic cross-section in this newly explored |t|-region remained unchanged and thus an exponential fit with only one constant B = (19.9 ± 0.3) GeV(−)(2) over the large |t|-range from 0.005 to 0.2 GeV(2) describes the differential distribution well. The high precision of the measurement and the large fit range lead to an error on the slope parameter B which is remarkably small compared to previous experiments. It allows a precise extrapolation over the non-visible cross-section (only 9%) to t = 0. With the luminosity from CMS, the elastic cross-section was determined to be (25.4 ± 1.1) mb, and using in addition the optical theorem, the total pp cross-section was derived to be (98.6 ± 2.2) mb. For model comparisons the t-distributions are tabulated including the large |t|-range of the previous measurement (TOTEM Collaboration (Antchev G. et al), EPL, 95 (2011) 41001).

5 data tables

The measured differential elastic cross section.

The measured differential elastic cross section in the high |T| region. where it originally appeared as a plot, but was not tabulated.

The fitted slope parameter for the elastic cross section fitted over 4 |T| ranges.

More…

A Measurement of $\bar{p} p$ and $p p$ Elastic Scattering in the Dip Region at $\sqrt{s}=53$-{GeV}

Breakstone, A. ; Crawley, H.B. ; Dallavalle, G.M. ; et al.
Phys.Rev.Lett. 54 (1985) 2180, 1985.
Inspire Record 212895 DOI 10.17182/hepdata.20368

We have measured the differential cross section for p¯p and pp elastic scattering at s=53 GeV in the interval 0.5<|t|<4.0 (GeV/c)2 at the CERN intersecting storage rings using the split-field magnet detector. The shape of the differential cross section differs significantly between p¯p and pp scattering in the region 1.1<|t|<1.5 (GeV/c)2, with p¯p data showing a less pronounced dip structure than pp data.

2 data tables

No description provided.

No description provided.


Analyzing power measurement of p p elastic scattering in the Coulomb - nuclear interference region with the 200-GeV/c polarized proton beam at Fermilab

The E581/704 collaboration Akchurin, N. ; Langland, J. ; Onel, Y. ; et al.
Phys.Rev.D 48 (1993) 3026-3036, 1993.
Inspire Record 364576 DOI 10.17182/hepdata.22670

The analyzing power AN of proton-proton elastic scattering in the Coulomb-nuclear interference region has been measured using the 200-GeV/c Fermilab polarized proton beam. A theoretically predicted interference between the hadronic non-spin-flip amplitude and the electromagnetic spin-flip amplitude is shown for the first time to be present at high energies in the region of 1.5 × 10−3 to 5.0 × 10−2 (GeV/c)2 four-momentum transfer squared, and our results are analyzed in connection with theoretical calculations. In addition, the role of possible contributions of the hadronic spin-flip amplitude is discussed.

1 data table

No description provided.


Isobar production and elastic scattering in p p interactions from 6-GeV/c to 30-GeV/c

Edelstein, R.M. ; Carrigan, Richard A., Jr. ; Hien, N.C. ; et al.
Phys.Rev.D 5 (1972) 1073-1096, 1972.
Inspire Record 67297 DOI 10.17182/hepdata.22467

Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.

25 data tables

No description provided.

No description provided.

No description provided.

More…

Absolute p p elastic cross-sections from 492-MeV to 793-MeV using CH-2 targets

Simon, A.J. ; Glass, G. ; McNaughton, M.W. ; et al.
Phys.Rev.C 53 (1996) 30-34, 1996.
Inspire Record 429629 DOI 10.17182/hepdata.25831

pp-elastic differential cross sections are reported at 492 MeV from 40° to 90°, and at 576, 642, 728, and 793 MeV from 75° to 90° c.m., with an absolute accuracy of less than 1%. These data, obtained with polyethylene targets, agree with recent measurements at the same energies obtained with a liquid-hydrogen target. © 1996 The American Physical Society.

10 data tables

No description provided.

No description provided.

No description provided.

More…