Transverse momentum spectra of electrons from Au+Au collisions at sqrt(s_NN) = 130 GeV have been measured by the PHENIX experiment at RHIC. The spectra show an excess above the background from photon conversions and light hadron decays. The electron signal is consistent with that expected from semi-leptonic decays of charm. The yield of the electron signal dN_e/dy for p_T > 0.8 GeV/c is 0.025 +/- 0.004 (stat.) +/- 0.010 (sys.) in central collisions, and the corresponding charm cross section is 380 +/- 60 (stat.) +/- 200 (sys.) micro barns per binary nucleon-nucleon collision.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. The upper limit for 1.9 GeV/$c$ is 4.10224e-05.
We have measured the cross sections $d^2\sigma/dP_T d\eta$ for production of isolated direct photons in \pbarp collisions at two different center-of-mass energies, 1.8 TeV and 0.63 TeV, using the Collider Detector at Fermilab (CDF). The normalization of both data sets agree with the predictions of Quantum Chromodynamics (QCD) for photon transverse momentum ($P_T$) of 25 GeV/c, but the shapes versus photon $P_T$ do not. These shape differences lead to a significant disagreement in the ratio of cross sections in the scaling variable $x_T (\equiv 2P_T/\sqrt{s}$). This disagreement in the $x_T$ ratio is difficult to explain with conventional theoretical uncertainties such as scale dependence and parton distribution parameterizations.
The 1800 GeV isolated photon cross section. The systematic (DSYS) uncertainties include the normalisation uncertainties which are 100 PCT correlated bin tobin.
The 630 GeV isolated photon cross section. The systematic (DSYS) uncertainties include the normalisation uncertainties which are 100 PCT correlated bin to bin.
Two-pion correlations in sqrt(s_NN)=130 GeV Au+Au collisions at RHIC have been measured over a broad range of pair transverse momentum k_T by the PHENIX experiment at RHIC. The k_T dependent transverse radii are similar to results from heavy ion collisions at sqrt(s_NN) = 4.1, 4.9, and 17.3 GeV, whereas the longitudinal radius increases monotonically with beam energy. The ratio of the outwards to sidewards transverse radii (R_out/R_side) is consistent with unity and independent of k_T.
HBT radii for pion pairs as a function of $k_T$ measured at mid-rapidity for various energies for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. Values used are from the Longitudinal Co-Moving System (LCMS) frame.
HBT radii for pion pairs as a function of $k_T$ measured at mid-rapidity for various energies for Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. Values used are from the Pair Center-of-Mass System (PCMS) frame.
The top panel shows the measured $R_{side}$ from identical pions for PHENIX. The bottom panel shows the ratio $R_{out}/R_{side}$ as a function of $k_T$. Longitudinal Co-Moving System (LCMS) frame for $\pi^+$
Identified pi^[+/-] K^[+/-], p and p-bar transverse momentum spectra at mid-rapidity in sqrt(s_NN)=130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleons in a similar way for all particle species. The multiplicity densities scale faster than the number of participating nucleons. Kaon and nucleon yields per participant increase faster than the pion yields. In central collisions at high transverse momenta (p_T greater than 2 GeV/c), anti-proton and proton yields are comparable to the pion yields.
Transverse momentum spectra for PI+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.
Transverse momentum spectra for PI- in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.
Transverse momentum spectra for K+ in the midrapidity range for the centrality region 0 to 5 PCT. Errors are combined statistical and systematics.
We report on measurements of the ϒ(1S), ϒ(2S), and ϒ(3S) differential cross sections (d2σ/dpTdy)|y|<0.4, as well as on the ϒ(1S) polarization in pp¯ collisions at s=1.8TeV using a sample of 77±3pb−1 collected by the collider detector at Fermilab. The three resonances were reconstructed through the decay ϒ→μ+μ−. The measured angular distribution of the muons in the ϒ(1S) rest frame is consistent with unpolarized meson production.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(1S) production.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(2S) production. The first DSYS error is the systematic error due to the polarization of the UPSILON which is shown seperately from the other systematic errors.
The differential cross section times the branching ratio into mu+ mu- for UPSILON(3S) production. The first DSYS error is the systematic error due to the polarization of the UPSILON which is shown seperately from the other systematic errors.
We present measurements of the B+ meson total cross section and differential cross section $d\sigma/ dp_T$. The measurements use a $98\pm 4$ pb^{-1} sample of $p \bar p$ collisions at $\sqrt{s}=1.8$ TeV collected by the CDF detector. Charged $B$ meson candidates are reconstructed through the decay $B^{\pm} \to J/\psi K^{\pm}$ with $J/\psi\to \mu^+ \mu^-$. The total cross section, measured in the central rapidity region $|y|<1.0$ for $p_T(B)>6.0$ GeV/$c$, is $3.6 \pm 0.6 ({\rm stat} \oplus {\rm syst)} \mu$b. The measured differential cross section is substantially larger than typical QCD predictions calculated to next-to-leading order.
Measured differential cross section for B+ production. The first (DSYS) error is the PT dependent systematic error and the second is the full correlated systematic error.
The total integrated B+ meson cross section. The first error is the combined statistical and PT dependent systematic error. The DSYS error is the fully correlated systematic error.
We present a study of pp¯ collisions at s=1800 and 630 GeV collected using a minimum bias trigger by the CDF experiment in which the data set is divided into two classes corresponding to “soft” and “hard” interactions. For each subsample, the analysis includes measurements of the multiplicity, transverse momentum (pT) spectrum, and the average pT and event-by-event pT dispersion as a function of multiplicity. A comparison of results shows distinct differences in the behavior of the two samples as a function of the center of mass (c.m.) energy. We find evidence that the properties of the soft sample are invariant as a function of c.m. energy.
Charged multiplicity at $\sqrt{s} = 630~\text{GeV}$, $|\eta| < 1$, $p_T > 0.4~\text{GeV}$.
Charged multiplicity at $\sqrt{s} = 1800~\text{GeV}$, $|\eta| < 1$, $p_T > 0.4~\text{GeV}$.
$\langle p_\perp \rangle$ vs. multiplicity at $\sqrt{s} = 630~\text{GeV}$, $|\eta| < 1$, $p_T > 0.4~\text{GeV}$.
We report the first measurement of inclusive antiproton production at mid-rapidity in Au+Au collisions at 130 GeV by the STAR experiment at RHIC. The antiproton transverse mass distributions in the measured transverse momentum range of 0.25 < pT < 0.95 GeV/c are found to fall less steeply for more central collisions. The extrapolated antiproton rapidity density is found to scale approximately with the negative hadron multiplicity density.
Tranverse mass distributions for different centralities
Antiproton fit parameters and yields. Systematic errors are 10%.
Antiproton fit parameters and yields. Systematic errors are 10%.
The central inclusive jet cross section has been measured using a successive-combination algorithm for reconstruction of jets. The measurement uses 87.3 pb^{-1} of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider during 1994-1995. The cross section, reported as a function of transverse momentum (pT>60 GeV) in the central region of pseudorapidity (|\eta|<0.5), exhibits reasonable agreement with next-to-leading order QCD predictions, except at low pT where the agreement is marginal.
The inclusive jet cross section as a function of PT.
Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 GeV/c $< p_T <$ 5 GeV/c have been measured by the PHENIX experiment at RHIC in Au+Au collisions at $\sqrt{s_{_{NN}}}=130$ GeV. At high $p_T$ the spectra from peripheral nuclear collisions are consistent with the naive expectation of scaling the spectra from p+p collisions by the average number of binary nucleon- nucleon collisions. The spectra from central collisions are significantly suppressed when compared to the binary- scaled p+p expectation, and also when compared to similarly binary-scaled peripheral collisions, indicating a novel nuclear effect in central nuclear collisions at RHIC energies.
The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 0-80% from the PbSc detector.
The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 60-80% from the PbSc detector.
The yields per event at mid-rapidity for neutral pions as a function of $p_T$ for 0-10% from the PbGl detector.