Elastic scattering of p¯ on p has been studied for cosθc.m. between -0.88 and -1.0 and Plab(p¯) between 0.70 and 2.16 GeV/c. The momentum dependence of the cross section shows a sharp dip at 0.9 GeV/c and a broad peaking around 1.4 GeV/c. The possibility of the peak resulting from direct formation of boson resonances has been studied. Alternatively, a diffraction model agrees qualitatively with our data and other elastic data at different angles.
'1'. '2'. '3'.
No description provided.
No description provided.
About 10 000 two-prong events of 8.1 GeV/ c proton-proton interactions in the CERN 2 m. bubble chamber have been analyzed. We study elastic scattering and single-pion production reactions. We give cross sections for isobar production. We attempt to interpret the general features of the pp→pn π + reaction by the Deck mechanism. We compare the production and the decay of δ ++ (1236) with absorption or π Regge trajectory exchange models.
No description provided.
No description provided.
No description provided.
The differential cross-section for the elastic neutron-proton-scattering has been measured for neutron energies between 4 and 16 GeV and | t | from 0.3 to 1.3 (GeV/ c ) 2 . The results can be fitted by exp( A + Bt ), where B increases slightly with energy indicating shrinkage. The values of B for n−p scattering are in good agreement with the corresponding data for p−p scattering.
'1'. '2'. '3'. '4'.
Elastic π±−p, K−−p, and p¯−p scattering cross sections have been measured using three different experimental arrangements covering the c.m. angular regions ∼20°-120°, ∼135°-169°, and ∼165°-180° at incident momenta from 6 to 17 GeV/c. In the region 130°-180°, only π±−p scattering was measured. In the angular region near 180°, the energy dependences and shapes of the π−p backward peaks were determined up to crossed-momentum transfers of u∼−2 (GeV/c)2. At all energies, the π+−p backward peak had a sharp dip at u=−0.13 (GeV/c)2, with no similar effect in the π−−p case. Nearly complete angular distributions of π−−p elastic scattering from 20° to 180° have been obtained at 6 and 10 GeV/c. These results at 6 and 10 GeV/c as well as at 8 GeV/c reveal a sharp dip in π−−p scattering at t=−3 (GeV/c)2. Several structures in the form of dips or shoulders were seen in the p¯−p angular distributions also, with less pronounced structure observed in K−−p scattering. At fixed momentum transfer, all cross sections when expressed as dσdt appear to be decreasing with increasing energy.
'1'. '2'. '3'. '4'.
No description provided.
No description provided.
About 3700 two-prong and 5600 four-prong events of 10-GeV/c pp interactions in the Saclay 81-cm hydrogen bubble chamber have been measured and analyzed. The reliability of the identification of the different final states has been checked using Monte Carlo-generated events. For the channels accessible to analysis, cross sections and invariant-mass distributions are given. The c.m. angular distributions and the mean values of the transverse momentum for all final-state particles are shown and discussed. Production of Δ++(1236) accounts for about 30% of the cross section σ(pp→pnπ+)=4.1±0.4 mb. About 50% of the cross section σ(pp→ppπ+π−)=2.4±0.2 mb can be accounted for by Δ++ production. Production of nucleon isobars at 1450, 1520, and 1730 MeV and their subsequent decay into pπ+π− are investigated. Their cross sections, t dependences, and branching ratios are determined, using a one-pion-exchange model (OPEM) for calculating the background distributions. The production of resonances decaying into pπ− at 1236, 1500, and 1690 MeV is seen, and cross sections are given. Resonance production in the ppπ+π−π0 and pnπ+π+π− reactions is studied using background curves calculated with a model based on simple parametrizations of the c.m. momentum distributions. The production of nucleon isobars accounts for nearly 100% of these reactions. For the reactions pp→ppω, ppη, and ppf0, the cross sections found are 0.16±0.03, 0.16±0.07, and 0.10±0.04 mb, respectively, corrected for unobserved decay modes. It is shown that most of the gross features of the pion-production reactions can be explained by the OPEM with the form factors of Ferrari and Selleri.
No description provided.
No description provided.
A systematic survey of strange-particle final states produced by 8−BeVc protons was made in the BNL 80-in. hydrogen bubble chamber. Cross sections were measured for some 33 reactions. The ratio of the cross section for the KK¯ channels to the total strange-particle cross section was measured to be 0.12 and appears to be rising in this momentum region. The total cross section for strange-particle production is estimated as 1.8±0.2 mb. Comparison is made of the data with the predictions of the one-pion-exchange model, and at least partial agreement occurs for the K+pΛ and πKNΣ final states. The KpΣ states appear to contain N*(1924)→KΣ, and the πKNΛ states all include Y*(1385) production with the π+K0pΛ state also containing N*(1236) and K*(890) production. An examination of the five- and six-body K, Λ states indicates strong Y*(1385) and N*(1236) production. Finally, all final states containing a K and a Λ show a dependence on M(K,Λ) which is well parametrized by a Breit-Wigner shape with M0=1777 MeV and Γ=345 MeV. This behavior is interpreted as being consistent with one-pion exchange as the dominant mechanism for these reactions.
'1'. '2'.
Measurements of the ratio (R) of positron-proton and electron-proton elastic-scattering cross sections have been made, with the square of the four-momentum transfer (q2) equal to 0.20, 0.69, 0.73, 1.54, 2.44, 3.27, 3.79, and 5.00 (GeV/c)2. The measurements, after radiative corrections, are consistent with R=1, with standard errors ranging from ±0.016 to ±0.123. The results give limits for the size of the two-photon effects.
No description provided.
No description provided.
Differential cross sections for elastic π±−p scattering have been measured at lab momenta of 8 and 12 GeV/c in a momentum-transfer region corresponding to 1.2≤−t≤6 (GeV/c)2. Also, differential cross sections near 180° were measured for 4 and 8 GeV/c pions. At momentum transfers greater than −t=2 (GeV/c)2, the π−p cross sections drop much faster with increasing angle than the corresponding p−p cross sections. Also, in the region −t≃1.3 (GeV/c)2, there is structure in the π−p angular distribution but not in the p−p angular distribution. At −t≃3 (GeV/c)2, the drop in cross section appears to stop and from then on the angular distribution is consistent with isotropy. But in the angular region 170° to 180°, the cross sections have become much larger, and sharp backward peaks are observed. Information is given on the energy and charge dependences and widths of these backward peaks.
'1'. '2'.
'1'. '2'.
No description provided.