Fission fragment cross sections and angular anisotropies have been measured to high accuracy following fusion of 16O with the strongly deformed nucleus 182W, at bombarding energies spanning the fusion barrier region. Together with existing evaporation residue data, they show that at all the beam energies, the statistical transition state model adequately describes the fission properties measured. No significant evidence was found for a memory of the different configurations at fusion resulting from the target nucleus deformation, in contrast with previous measurements for deformed actinide nuclei.
No description provided.
Reaction mechanisms and multifragmentation processes have been studied for 64Zn+58Ni collisions at intermediate energies with the help of antisymmetrized molecular dynamics (AMD-V) model calculations. Experimental energy spectra, angular distributions, charge distributions, and isotope distributions, classified by their associated charged particle multiplicities, are compared with the results of the AMD-V calculations. In general the experimental results are reasonably well reproduced by the calculations. The multifragmentation observed experimentally at all incident energies is also reproduced by the AMD-V calculations. A detailed study of AMD-V events reveals that, in nucleon transport, the reaction shows some transparency, whereas in energy transport the reaction is much less transparent at all incident energies studied here. The transparency in the nucleon transport indicates that, even for central collisions, about 75% of the projectile nucleons appear in the forward direction. In energy transport about 80% of the initial kinetic energy of the projectile in the center- of-mass frame is dissipated. The detailed study of AMD-V events also elucidates the dynamics of the multifragmentation process. The study suggests that, at 35A MeV, the semitransparency and thermal expansion are the dominant mechanisms for the multifragmentation process, whereas at 49A MeV and higher incident energies a nuclear compression occurs at an early stage of the reaction and plays an important role in the multifragmentation process in addition to that of the thermal expansion and the semitransparency.
No description provided.
Average summed transverse momentum.
Measurements of the total reaction cross section for 12−16C, 14−17N, and 16−18O on carbon target at intermediate energies were performed on the Radioactive Ion Beam Line of the Heavy Ion Research Facility in Lanzhou. A larger enhancement of σR for 15C was observed than for its neighbors. Evidence for possible anomalous nuclear structure in 15C was revealed in the analysis of the total reaction cross section in terms of the difference factor d.
No description provided.
The production of single photons has been studied in the reaction e+e- -> gamma + invisible particles at centre-of-mass energies of 183 GeV and 189 GeV. A previously published analysis of events with multi-photon final states accompanied by missing energy has been updated with 189 GeV data. The data were collected with the DELPHI detector and correspond to integrated luminosities of about 51 pb^{-1} and 158 pb^{-1} at the two energies. The number of light neutrino families is measured to be 2.84 +/- 0.15(stat) +/- 0.14(syst). The absence of an excess of events beyond that expected from Standard Model processes is used to set limits on new physics as described by supersymmetric and composite models. A limit on the gravitational scale is also determined.
No description provided.
Combined result.
Attenuation measurements of reaction and total cross sections have been made for π− beams at 410, 464, and 492 MeV on targets of CD2, 6Li, C, Al, S, Ca, Cu, Zr, Sn, and Pb. These results are assisted by and compared to predictions from a recent eikonal optical model. Calculations with this model, which does not include pion absorption, agree with recent elastic scattering data, but are significantly below our measured reaction and total cross sections.
No description provided.
No description provided.
No description provided.
Total reaction cross sections σR of (30–60)AMeV 4,6,8He and 6,7,8,9,11Li on Pb, and 2n-removal cross sections σ−2n of 6,8He and 11Li on Pb, were measured by injecting magnetically separated, focused, monoenergetic, secondary beams of those projectiles into a telescope containing Pb targets separated by thin Si detectors. All these σR’s (except 4He), and σ−2n for 6He and 11Li, are underpredicted by microscopic model calculations which include only nuclear forces. Better agreement is achieved by including electromagnetic dissociation in the model, for those projectiles for which either the electric dipole response functions or the dominant photodissociation cross sections were known. The cross sections σ−4n for 8He, σ−xn for 7,8,9Li, and (σ−3n+σ−4n) for 11Li were found to be ⩽0.7 b. All σR’s were measured to better than 5% accuracy, showing that the method is usable for other target elements sandwiched into a Si telescope.
No description provided.
No description provided.
No description provided.
A first measurement of the cross section of the process e+e- -> Z gamma gamma is reported using a total integrated luminosity of 231 pb^-1 collected with the L3 detector at centre-of-mass energies of 182.7 GeV and 188.7 GeV. By selecting hadronic events with two isolated photons the e+e- -> Z gamma gamma cross section is measured to be 0.49 +0.20 -0.17 +/- 0.04 pb at 182.7 GeV and 0.47 +/- 0.10 +/- 0.04 pb at 188.7 GeV. The measurements are consistent with Standard Model expectations. Limits on Quartic Gauge Boson Couplings a_0/Lambda^2 and a_c/Lambda^2 of -0.009 GeV^-2 < a_0/Lambda^2 < 0.008 GeV^-2 and -0.007 GeV^-2 < a_c/Lambda^2 < 0.013 GeV^-2 are derived at 95% confidence level.
The measured cross section for the hadronic decay of the Z0.
The cross sections scaled for the hadronic Z0 branching ratio.
Bhabha scattering data recorded at \sqrt{s}=189 GeV by the L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are alpha^-1(-2.1 GeV^2) - alpha^-1(-6.25 GeV^2) = 0.78 +/- 0.26 alpha^-1(-12.25 GeV^2) - alpha^-1(-3434 GeV^2) = 3.80 +/- 1.29, in agreement with theoretical predictions.
No description provided.
Results extracted from the small angle Bhabha scattering sample at Z peak. Results contained total experimental uncertainty.
Results extracted from the large angle Bhabha scattering sample at sqrt(s) = 189 GeV. Results contained total experimental and theoretical uncertainty.
A study of Z boson pair production in e+e- annihilation at center-of-mass energies near 183 GeV and 189 GeV is reported. Final states containing only leptons, (l+l-l+l- and l+l-nu nubar), quark and lepton pairs, (q qbar l+l-, q qbar nu nubar) and the all-hadronic final state (q qbar q qbar) are considered. In all states with at least one Z boson decaying hadronically, q qbar and b bbar final states are considered separately using lifetime and event-shape tags, thereby improving the cross-section measurement. At sqrt(s) = 189 GeV the Z-pair cross section was measured to be 0.80 (+0.14-0.13, stat.) (+0.06-0.05, syst.) pb, consistent with the Standard Model prediction. At sqrt(s) = 183 GeV the 95% C.L. upper limit is 0.55 pb. Limits on anomalous ZZgamma and ZZZ couplings are derived.
Measured cross sections for Z0 pair production.
Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be
The measured differential cross section for SIGMA- production.
The total production rate of SIGMA-. The second systematic (DSYS) error is due to the extrapolation to the fullx-range.
The measured differential cross section for LAMBDA(1520) production. The first error is the fit error.