Measurement of the hadronic cross-section for the scattering of two virtual photons at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 24 (2002) 17-31, 2002.
Inspire Record 563730 DOI 10.17182/hepdata.48895

The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.

11 data tables

Total cross section in the given phase space and assuming ALPHA = 1/137.

Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.

Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.

More…

Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

7 data tables

The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).

The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

More…

QCD analyses and determinations of alpha(s) in e+ e- annihilation at energies between 35-GeV and 189-GeV.

The JADE & OPAL collaborations Pfeifenschneider, P. ; Biebel, O. ; Movilla Fernandez, P.A. ; et al.
Eur.Phys.J.C 17 (2000) 19-51, 2000.
Inspire Record 513337 DOI 10.17182/hepdata.12882

We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.

80 data tables

Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.

Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.

Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.

More…

Total hadronic cross-section of photon photon interactions at LEP.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Eur.Phys.J.C 14 (2000) 199-212, 2000.
Inspire Record 502548 DOI 10.17182/hepdata.49107

The total hadronic cross-section sigma_gg(W) for the interaction of real photons, gg->hadrons, is measured for gg centre-of-mass energies 10<W<110 GeV. The cross-section is extracted from a measurement of the process e+e- -> e+e-g*g* -> e+e- hardrons, using a luminosity function for the photon flux together with form factors for extrapolating to real photons (Q^2=0 GeV^2). The data were taken with the OPAL detector at LEP at e+e- centre-of-mass energies 161, 172 and 183 GeV. The cross-section sigma_gg(W) is compared with Regge factorisation and with the energy dependence observed in gp and pp interactions. The data are also compared to models which predict a faster rise of sigma_gg(W) compared to gp and pp interactions due to additional hard gg interactions not present in hadronic collisions.

2 data tables

No description provided.

No description provided.


Measurement of the longitudinal cross-section using the direction of the thrust axis in hadronic events at LEP.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Phys.Lett.B 440 (1998) 393-402, 1998.
Inspire Record 474666 DOI 10.17182/hepdata.49354

In the process e+e- to hadrons, one of the effects of gluon emission is to modify the 1+cos(theta)**2 form of the angular distribution of the thrust axis, an effect which may be quantified by the longitudinal cross-section. Using the OPAL detector at LEP, we have determined the longitudinal to total cross-section ratio to be 0.0127+-0.0016+-0.0013 at the parton level, in good agreement with the expectation of QCD computed to Order(alpha_s**2) Comparisions at the hadron level with Monte Carlo models are presented. The dependence of the longitudinal cross-section on the value of thrust has also been studied, and provides a new test of QCD.

2 data tables

Values of SIG(C=L) integrated over all Thrust.

Measured values of the differential cross section, and the corresponding ratio of longitudinal to total cross sections, corrected to the hadron level.


Production of f0(980), f2(1270) and Phi(1020) in hadronic Z0 decay.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Eur.Phys.J.C 4 (1998) 19-28, 1998.
Inspire Record 467092 DOI 10.17182/hepdata.49558

Inclusive production of the f_0(980), f_2(1270) and \phi(1020) resonances has been studied in a sample of 4.3 million hadronic Z^0 decays from the OPAL experiment at LEP. A coupled channel analysis has been used for the f_0 in simultaneous fits to the resonances in inclusive \pi+\pi- and K+K- mass spectra. Fragmentation functions are reported for the three states. Total inclusive rates are measured to be 0.141 +/- 0.007 +/- 0.011 f_0, 0.155 +/- 0.011 +/- 0.018 f_2, and 0.091 +/- 0.002 +/- 0.003 \phi mesons per hadronic Z^0 decay. The production properties of the f_0, including those in three-jet events, are compared with those of the f_2 and \phi, and with the Lund string model of hadron production. All measurements are consistent with the hypothesis that the f_0 is a conventional qq(bar) scalar meson.

2 data tables

Total inclusive production rates.

Fragmentation functions. Additional systematic errors of 7.6 PCT for F0, 11.6 PCT for F2 and 3.5 PCT for PHI. The uncorrelated systematic errors for F0 and F2 are negligible in comparison to the other errors.


Sigma+, Sigma0 and Sigma- hyperon production in hadronic Z0 decays.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 587-600, 1997.
Inspire Record 421977 DOI 10.17182/hepdata.47948

The production rates of the $J_{P}={1⩈er 2}^{+}$ octet Σ baryons in hadronic Z0 decays have been measured using the OPAL detector at LEP. The inclusive production rates per hadronic Z0 decay of the three isospin states (including the respective antiparticle) have been separately measured for the first time: $άtrix {n_{Sigma^{+}}=0.099pm 0.008pm 0.013ŗ n_{Sigma^{0}}=0.071pm 0.012pm 0.013ŗ n_{Sigma^{-}}=0.083pm 0.006pm 0.009ŗ}$ where the first error is statistical and the second is systematic. Differential cross-sections are also presented for the Σ+ and Σ− and compared with JETSET and HERWIG predictions. Assuming full isospin symmetry, the average inclusive rate is: ${1⩈er 3}[n_{Sigma^{+}+Sigma^{0}+Sigma^{-}}]=0.084pm 0.005 ({⤪ stat.}) pm 0.008 ({⤪ syst.})$.

5 data tables

Differential cross section for SIGMA+ production.

Differential cross section for SIGMA- production.

No description provided.

More…

Strange baryon production in hadronic Z0 decays.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 73 (1997) 569-586, 1997.
Inspire Record 421978 DOI 10.17182/hepdata.47777

The production of the $J^{P}={1⩈er 2}^{+}$ octet baryons Λ and Ξ−, the $J^{P}={3⩈er 2}^{+}$ decuplet baryons Σ(1385)±Ξ(1530)0, and Ω−, and the $J^{P}={3⩈er 2}^{-}$ orbitally excited state Λ(1520) has been measured in a sample of approximately 3.65 million hadronic Z0 decays. The integrated rates and the differential cross-sections as a function of xE, the scaled energy, are determined. The differential cross-sections of the Λ and Ξ− baryons are found to be softer than those predicted by both the JETSET and HERWIG Monte Carlo generators. The measured baryon yields are found to disagree with the simple diquark picture where only one tuning parameter for spin 1 diquarks is allowed. The yields are further compared with a thermodynamic model of hadron production which includes the production of orbitally excited mesons and baryons. The momentum spectra of Λ, Ξ−, Σ(1385)±Ξ(1530)0, and Λ(1520) are also compared to the predictions of an analytical QCD formula.

13 data tables

Differential cross section for LAMBDA production.

(1/LN(X)) distribution for LAMBDA production.

Differential cross section for XI- production.

More…

The Production of neutral kaons in Z0 decays and their Bose-Einstein correlations

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 67 (1995) 389-402, 1995.
Inspire Record 393503 DOI 10.17182/hepdata.48008

The production of neutral kaons in e+e− annihilation at centre-of-mass energies in the region of the Z0 mass and their Bose-Einstein correlations are investigated with the OPAL detector at LEP. A total of about 1.26×106 Z0 hadronic decay events are used in the analysis. The production rate of K0 mesons is found to be 1.99±0.01±0.04 per hadronic event, where the first error is statistical and the second systematic. Both the rate and the differential cross section for K0 production are compared to the predictions of Monte Carlo generators. This comparison indicates that the fragmentation is too soft in bothJetset andHerwig. Bose-Einstein correlations in Ks0Ks0 pairs are measured through the quantityQ, the four momentum difference of the pair. A threshold enhancement is observed in Ks0Ks0 pairs originating from a mixed sample of\(K^0 \bar K^0\) and K0K0 (\(\bar K^0 \bar K^0\)) pairs. For the strength of the effect and for the radius of the emitting source we find values of λ=1.14±0.23±0.32 andR0=(0.76±0.10±0.11) fm respectively. The first error is statistical and the second systematic.

3 data tables

No description provided.

The mean x is computed using the method of Lafferty and Wyatt NIM A355(1995)541.

The mean x is computed using the method of Lafferty and Wyatt NIM A355(1995)541.


Inclusive strange vector and tensor meson production in hadronic Z0 decays

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 68 (1995) 1-12, 1995.
Inspire Record 393954 DOI 10.17182/hepdata.47993

Measurements have been made in the OPAL experiment at LEP of the inclusive production of strange vector φ(1020) and K*(892)0 mesons, and the tensor meson K2*(1430)0. The overall production rates per hadronic Z0 decay have been determined to be 0.100±0.004stat.±0.007syst. φ(1020) mesons, 0.74±0.03stat.±0.03syst. K*(892)0 mesons and (forxE<0.3) 0.19±0.04stat.±0.06syst. K2*(1430)0 mesons. The measurements for the vector states update previously published results based on lower statistics, while the K2*(1430)0 rate represents the first direct measurement of a strange tensor state in Z0 decay. For the vector states, both the overall production rates and normalised differential cross sections, with respect to the scaled energy variablexE, have been compared to JETSET and HERWIG predictions. The peak positions in the ζ=ln(1/xp) distributions have been measured and compared to measurements of other hadron states.

5 data tables

No description provided.

No description provided.

Extrapolated to full x region.

More…