Partonic collectivity is one of the necessary signatures for the formation of Quark-Gluon-Plasma in high-energy nuclear collisions. Number of Constituent Quarks (NCQ) scaling has been observed for light hadron elliptic flow $v_2$ in top energy nuclear collisions at RHIC and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this letter, a systematic analysis of $v_2$ of $\pi^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$ and $\Lambda$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at RHIC, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV
$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV
We measure the spin-density matrix elements (SDMEs) for the photoproduction of $ϕ(1020)$ off of the proton in its decay to $K_S^0K_L^0$, using 105 pb$^{-1}$ of data collected with a linearly polarized photon beam using the GlueX experiment. The SDMEs are measured in nine bins of the squared four-momentum transfer $t$ in the range $-t=0.15-1.0$ GeV$^2$, providing the first measurement of their $t$-dependence for photon beam energies $E_γ= 8.2-8.8$ GeV. We confirm the dominance of Pomeron exchange in this region, and put constraints on the contribution of other Regge exchanges. We also find that helicity amplitudes where the helicity of the photon and the $ϕ(1020)$ differ by two units are negligible.
Spin-density matrix elements of $\phi(1020)$ mesons produced by a linearly polarized photon beam in the helicity system. For each bin of $-t$, the limits of the bin range are given, along with the average $-\bar t$ and root-mean-square deviation $-t_\text{RMS}$ of all events that fall within the bin.
A measurement of the WZ$γ$ triboson production cross section is presented. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis focuses on the final state with three charged leptons, $\ell^\pmν\ell^+\ell^-$, where $\ell$ = e or $μ$, accompanied by an additional photon. The observed (expected) significance of the WZ$γ$ signal is 5.4 (3.8) standard deviations. The cross section is measured in a fiducial region, where events with an $\ell$ originating from a tau lepton decay are excluded, to be 5.48 $\pm$ 1.11 fb, which is compatible with the prediction of 3.69 $\pm$ 0.24 fb at next-to-leading order in quantum chromodynamics. Exclusion limits are set on anomalous quartic gauge couplings and on the production cross sections of massive axion-like particles.
The distributions of the variables used in the simultaneous fit for the nonprompt $l$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The distributions of the variables used in the simultaneous fit for the nonprompt $\gamma$ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
The distributions of the variables used in the simultaneous fit for the ZZ CR. The black points with error bars represent the data and their statistical uncertainties, whereas the shaded band represents the predicted uncertainties. The bottom panel in each figure shows the ratio of the number of events observed in data to that of the total SM prediction. The last bin of each plot has been extended to include the overflow contribution.
A first search for beyond the standard model physics in jet scaling patterns of multilepton events is presented, using a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ of 13 TeV proton-proton collisions recorded by the CMS detector at the LHC. The search uses observed jet multiplicity distributions in one-, two-, and four-lepton events to explore possible enhancements in jet production rate in three-lepton events with and without bottom quarks. The data are found to be consistent with the standard model expectation. The results are interpreted in terms of supersymmetric production of electroweak chargino-neutralino superpartners with cascade decays terminating in prompt hadronic $R$-parity violating interactions.
Hard-scattered partons ejected from high-energy proton-proton collisions undergo parton shower and hadronization, resulting in collimated collections of particles that are clustered into jets. A substructure observable that highlights the transition between the perturbative and non-perturbative regimes of jet evolution in terms of the angle between two particles is the two-point energy correlator (EEC). In this letter, the first measurement of the EEC at RHIC is presented, using data taken from 200 GeV $p$+$p$ collisions by the STAR experiment. The EEC is measured both for all the pairs of particles in jets and separately for pairs with like and opposite electric charges. These measurements demonstrate that the transition between perturbative and non-perturbative effects occurs within an angular region that is consistent with expectations of a universal hadronization regime that scales with jet momentum. Additionally, a deviation from Monte-Carlo predictions at small angles in the charge-selected sample could result from mechanics of hadronization not fully captured by current models.
Corrected distributions of the normalized EEC differential in $R_{L}$ for $R_{\rm jet}=$ 0.6, with jet transverse momentum selections 15 $< p_{\rm T, jet} <$ 20 GeV/c and 30 $< p_{\rm T, jet} <$ 50 GeV/c
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
Corrected distributions of the normalized EEC within jets, differential in $ \left\langle p_{\rm T,jet} \right\rangle R_{L} $ at $R_{\rm jet} =$ 0.6 for one $p_{\rm T, jet}$ selection. Each distribution is normalized to integrate to one in $R_{L}$ prior to shifting.
The polarization of the $\Lambda$ and $\overline{\Lambda}$ hyperons along the beam direction has been measured in proton-lead (pPb) collisions at a center-of-mass energy per nucleon pair of 8.16 TeV. The data were obtained with the CMS detector at the LHC and correspond to an integrated luminosity of 186.0 $\pm$ 6.5 nb$^{-1}$. A significant azimuthal dependence of the hyperon polarization, characterized by the second-order Fourier sine coefficient $P_{z,s2}$, is observed. The $P_{z,s2}$ values decrease as a function of charged particle multiplicity, but increase with transverse momentum. A hydrodynamic model that describes the observed $P_{z,s2}$ values in nucleus-nucleus collisions by introducing vorticity effects does not reproduce either the sign or the magnitude of the pPb results. These observations pose a challenge to the current theoretical implementation of spin polarization in heavy ion collisions and offer new insights into the origin of spin polarization in hadronic collisions at LHC energies.
The second-order Fourier sine coefficients of $\Lambda$, $\bar{\Lambda}$ and $\Lambda+\bar{\Lambda}$ polarizations along the beam direction as functions of $N_\mathrm{trk}^\mathrm{offline}$ in pPb collisions at 8.16 TeV.
The second-order Fourier sine coefficients of $\Lambda+\bar{\Lambda}$ polarization along the beam direction as functions of $p_{T}$ in pPb collisions at 8.16 TeV.
The second-order Fourier sine coefficients of $K_{S}^{0}$ polarization along the beam direction as functions of $N_\mathrm{trk}^\mathrm{offline}$ in pPb collisions at 8.16 TeV.
We present an inclusive search for anomalous production of single-photon events from neutrino interactions in the MicroBooNE experiment. The search and its signal definition are motivated by the previous observation of a low-energy excess of electromagnetic shower events from the MiniBooNE experiment. We use the Wire-Cell reconstruction framework to select a sample of inclusive single-photon final-state interactions with a final efficiency and purity of 7.0% and 40.2%, respectively. We leverage simultaneous measurements of sidebands of charged current $\nu_{\mu}$ interactions and neutral current interactions producing $\pi^{0}$ mesons to constrain signal and background predictions and reduce uncertainties. We perform a blind analysis using a dataset collected from February 2016 to July 2018, corresponding to an exposure of $6.34\times10^{20}$ protons on target from the Booster Neutrino Beam (BNB) at Fermilab. In the full signal region, we observe agreement between the data and the prediction, with a goodness-of-fit $p$-value of 0.11. We then isolate a sub-sample of these events containing no visible protons, and observe $93\pm22\text{(stat.)}\pm35\text{(syst.)}$ data events above prediction, corresponding to just above $2\sigma$ local significance, concentrated at shower energies below 600 MeV.
Fig. 2. The reconstructed shower energy. The individual signal and background event type categories added together form the unconstrained prediction.
Fig. 2. The constrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.
Fig. 2, Suppl. Fig. 5. The unconstrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.
We report results from an updated search for neutral current (NC) resonant $\Delta$(1232) baryon production and subsequent $\Delta$ radiative decay (NC $\Delta\rightarrow N \gamma$). We consider events with and without final state protons; events with a proton can be compared with the kinematics of a $\Delta(1232)$ baryon decay, while events without a visible proton represent a more generic phase space. In order to maximize sensitivity to each topology, we simultaneously make use of two different reconstruction paradigms, Pandora and Wire-Cell, which have complementary strengths, and select mostly orthogonal sets of events. Considering an overall scaling of the NC $\Delta\rightarrow N \gamma$ rate as an explanation of the MiniBooNE anomaly, our data exclude this hypothesis at 94.4% CL. When we decouple the expected correlations between NC $\Delta\rightarrow N \gamma$ events with and without final state protons, and allow independent scaling of both types of events, our data exclude explanations in which excess events have associated protons, and do not exclude explanations in which excess events have no associated protons.
The four bins correspond to WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ predictions. Systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Constrained Signal Channels Covariance Matrix and Signal And Constraining Channels Covariance Matrix tabs. This corresponds to Fig. 1 and Table III of the paper.
Covariance matrix showing constrained uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Pearson data statistical uncertainties have been included, and include small correlations due to events which can be selected by both WC and Pandora. The four bins are the WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ channels. This corresponds to Fig. 1 and Table II of the paper.
Four constraining channels. The four channels in order are NC $\pi^0 Np$, NC $\pi^0 0p$, $\nu_\mu$CC $Np$, and $\nu_\mu$CC $0p$. Each channel contains 15 bins from 0 to 1500 MeV of reconstructed neutrino energy, with an additional overflow bin. Unconstrained and constrained systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Signal And Constraining Channels Covariance Matrix tab. This corresponds to Fig. 6 of the Supplemental Material.
We report measurements of $\varUpsilon(1S)$, $\varUpsilon(2S)$ and $\varUpsilon(3S)$ production in $\textit{p+p}$ collisions at $\sqrt{s}=500\:\mathrm{GeV}$ by the STAR experiment in year 2011, corresponding to an integrated luminosity $\mathcal{L}_{int}=13\:\mathrm{pb^{-1}}$. The results provide precise cross sections, transverse momentum ($p_{T}$) and rapidity ($y$) spectra, as well as cross section ratios for $p_{\mathrm{T}}<10\:\mathrm{GeV/c}$ and $|y|<1$. The dependence of the $\varUpsilon$ yield on charged particle multiplicity has also been measured, offering new insights into the mechanisms of quarkonium production. The data are compared to various theoretical models: the Color Evaporation Model (CEM) accurately describes the $\varUpsilon(1S)$ production, while the Color Glass Condensate + Non-relativistic Quantum Chromodynamics (CGC+NRQCD) model overestimates the data, particularly at low $p_{T}$. Conversely, the Color Singlet Model (CSM) underestimates the rapidity dependence. These discrepancies highlight the need for further development in understanding the production dynamics of heavy quarkonia in high-energy hadronic collisions. The trend in the multiplicity dependence is consistent with CGC/Saturation and String Percolation models or $\varUpsilon$ production happening in multiple parton interactions modeled by PYTHIA8.
The invariant mass distribution of electron pairs collected from p+p collisions at 500 GeV.
Single electron efficiencies.
Upsilon reconstruction efficiencies.
We measure for the first time the differential photoproduction cross section $d\sigma/dt$ of the $a_2(1320)$ meson at an average photon beam energy of 8.5~GeV, using data with an integrated luminosity of 104~pb$^{-1}$ collected by the GlueX experiment. We fully reconstruct the $\gamma p \to \eta\pi^0 p$ reaction and perform a partial-wave analysis in the $a_2(1320)$ mass region with amplitudes that incorporate the linear polarization of the beam. This allows us to separate for the first time the contributions of natural- and unnatural-parity exchanges. These measurements provide novel information about the photoproduction mechanism, which is critical for the search for spin-exotic states.
$a_2(1320)$ parity asymmetry, $P_{\sigma}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
$a_2(1320)$ differential cross section split into different reflectivity components, $\frac{d\sigma^+}{dt}$ and $\frac{d\sigma^-}{dt}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.
$a_2(1320)$ differential cross section in the m=-1 projection split into different reflectivity components, $\frac{d\sigma^+_{-1}}{dt}$ and $\frac{d\sigma^-_{-1}}{dt}$, in bins of four-momentum transfer. The first uncertainty is statistical, the second systematic.