We study the processes $e^+ e^-\to 2(\pi^+\pi^-)\pi^0\gamma$, $2(\pi^+\pi^-)\eta\gamma$, $K^+ K^-\pi^+\pi^-\pi^0\gamma$ and $K^+ K^-\pi^+\pi^-\eta\gamma$ with the hard photon radiated from the initial state. About 20000, 4300, 5500 and 375 fully reconstructed events, respectively, are selected from 232 fb$^{-1}$ of BaBar data. The invariant mass of the hadronic final state defines the effective $e^+ e^-$ center-of-mass energy, so that the obtained cross sections from the threshold to about 5 GeV can be compared with corresponding direct \epem measurements, currently available only for the $\eta\pi^+\pi^-$ and $\omega\pi^+\pi^-$ submodes of the $e^+ e^-\to 2(\pi^+\pi^-)\pi^0$ channel. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\omega(782)\pi^+\pi^-$ and study the $\omega(1420)$ and $\omega(1650)$ resonances. In the charmonium region, we observe the $J/\psi$ in all these final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and we measure the corresponding branching fractions.
Measured cross section for E+ E- --> 2(PI+ PI-) PI0 with statistical errorsonly.
Measured cross section for E+ E- --> ETA PI+ PI- with statistical errors only.
Measured cross section for E+ E- --> OMEGA PI+ PI- with statistical errors only.
The inclusive production cross sections of the charmed mesons D^0, D^+, D_s^+ and D^{*+} have been measured in interactions of 920 GeV protons on C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of transverse momentum and Feynman's x variable are given for the central rapidity region and for transverse momenta up to $\pT=3.5$ GeV/$c$. The atomic mass number dependence and the leading to non-leading particle production asymmetries are presented as well.
Cross sections (micro barns) in the visible range (-0.15<x_F<0.05).
Cross sections (micro barns) extrapolated to the total phase space.
Cross sections(micro barns) for particles production in the visible range (-0.15<x_F<0.05).
Cross sections for the $\gamma p \to K^+ \Lambda$ have been measured at backward angles using linearly polarized photons in the range 1.50 to 2.37 GeV. In addition, the beam asymmetry for this reaction has been measured for the first time at backward angles. The $\Lambda$ was detected at forward angles in the LEPS spectrometer via its decay to $p\pi^-$ and the K^+ was inferred using the technique of missing mass. These measurements, corresponding to kaons at far backward angles in the center-of-mass frame, complement similar CLAS data at other angles. Comparison with theoretical models shows that the reactions in these kinematics provide further opportunities to investigate the reaction mechanisms of hadron dynamics.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.5 to 1.8 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 1.8 to 2.1 GeV.
Differential cross sections as a function of the Mandelstam variable U for photon beam energy 2.1 to 2.4 GeV.
A series of semi-inclusive deep-inelastic scattering measurements on deuterium, helium, neon, krypton, and xenon targets has been performed in order to study hadronization. The data were collected with the HERMES detector at the DESY laboratory using a 27.6 GeV positron or electron beam. Hadron multiplicities on nucleus A relative to those on the deuteron, R_A^h, are presented for various hadrons (\pi^+, \pi^-, \pi^0, K^+, K^-, p, and \bar{p}) as a function of the virtual-photon energy \nu, the fraction z of this energy transferred to the hadron, the photon virtuality Q^2, and the hadron transverse momentum squared p_t^2. The data reveal a systematic decrease of R_A^h with the mass number A for each hadron type h. Furthermore, R_A^h increases (decreases) with increasing values of \nu (z), increases slightly with increasing Q^2, and is almost independent of p_t^2, except at large values of p_t^2. For pions two-dimensional distributions also are presented. These indicate that the dependences of R_A^{\pi} on \nu and z can largely be described as a dependence on a single variable L_c, which is a combination of \nu and z. The dependence on L_c suggests in which kinematic conditions partonic and hadronic mechanisms may be dominant. The behaviour of R_A^{\pi} at large p_t^2 constitutes tentative evidence for a partonic energy-loss mechanism. The A-dependence of R_A^h is investigated as a function of \nu, z, and of L_c. It approximately follows an A^{\alpha} form with \alpha \approx 0.5 - 0.6.
PI+ multiplicty ratio (Helium/Deuterium) as a function of NU.
K+ multiplicty ratio (Helium/Deuterium) as a function of NU.
P multiplicty ratio (Helium/Deuterium) as a function of NU.
Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Charm has been tagged by reconstructing D^{*+}, D^0, D^{+} and D_s^+ (+ c.c.) charm mesons. The charm hadrons were measured in the kinematic range p_T(D^{*+},D^0,D^{+}) > 3 GeV, p_T(D_s^+)>2 GeV and |\eta(D)| < 1.6 for 1.5 < Q^2 < 1000 GeV^2 and 0.02 < y < 0.7. The production cross sections were used to extract charm fragmentation ratios and the fraction of c quarks hadronising into a particular charm meson in the kinematic range considered. The cross sections were compared to the predictions of next-to-leading-order QCD, and extrapolated to the full kinematic region in p_T(D) and \eta(D) in order to determine the open-charm contribution, F_2^{c\bar{c}}(x,Q^2), to the proton structure function F_2.
Production cross section for all D0 mesons, those not originating fom D* decays and those originating from D* decays.
Production cross section for additional D* mesons (not decaying to D0) and all D* mesons.
Production cross section for D+ mesons.
We study the processes $e^+ e^-\to K^+ K^- \pi^+\pi^-\gamma$, $K^+K^-\pi^0\pi^0\gamma$ and $K^+ K^- K^+ K^-\gamma$, where the photon is radiated from the initial state. About 34600, 4400 and 2300 fully reconstructed events, respectively, are selected from 232 \invfb of \babar data. The invariant mass of the hadronic final state defines the effective \epem center-of-mass energy, so that the $K^+ K^- \pi^+\pi^-\gamma$ data can be compared with direct measurements of the $e^+ e^-\to K^+K^- \pipi$ reaction/ no direct measurements exist for the $e^+ e^-\to K^+ K^- \pi^0\pi^0$ or $\epem\to K^+ K^- K^+ K^-$ reactions. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from $e^+ e^-\to\phi(1020) f_{0}(980)$ and study its structure near threshold. In the charmonium region, we observe the $J/\psi$ in all three final states and several intermediate states, as well as the $\psi(2S)$ in some modes, and measure the corresponding branching fractions. We see no signal for the Y(4260) and obtain an upper limit of $\BR_{Y(4260)\to\phi\pi^+\pi^-}\cdot\Gamma^{Y}_{ee}<0.4 \ev$ at 90% C.L.
Measurement of the E+ E- --> K+ K- PI+ PI- cross section. Statistical errors only.
Measurement of the E+ E- --> K(892)0 K PI cross section. Statistical errors only.
Measurement of the E+ E- --> PHI PI+ PI- cross section. Statistical errors only.
Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.
Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.
We present particle spectra for charged hadrons $\pi^\pm, K^\pm, p$ and $\bar{p}$ from pp collisions at $\sqrt{s}=200$ GeV measured for the first time at forward rapidities (2.95 and 3.3). The kinematics of these measurements are skewed in a way that probes the small momentum fraction in one of the protons and large fractions in the other. Large proton to pion ratios are observed at values of transverse momentum that extend up to 4 GeV/c, where protons have momenta up to 35 GeV. Next-to-leading order perturbative QCD calculations describe the production of pions and kaons well at these rapidities, but fail to account for the large proton yields and small $\bar{p}/p$ ratios.
Invariant cross section for PI+ production in P P collisions at SQRT(S)=200 GeV and rapidity 2.95.
Invariant cross section for PI- production in P P collisions at SQRT(S)=200 GeV and rapidity 2.95.
Invariant cross section for K+ production in P P collisions at SQRT(S)=200 GeV and rapidity 2.95.
We present a comprehensive study of the inclusive production of V 0 V 0 pairs (V 0 =Lambda, Lambda-bar or K S ) by Sigma - and pi - of 340 GeV/ c momentum and neutrons of 260 GeV/ c mean momentum in copper and carbon targets. In particular, the de pendence of the x F spectra on the combination of beam-particle and produced V 0 V 0 pair is investigated and compared to predictions obtained from PYTHIA and QSGM calculations. The data and these predictions differ in many details, the agreement can at b est be termed as qualitative. A signal from decays of the tensor meson f? 2 (1525) was observed in the K S K S mass distribution and inclusive production cross sections were measured. No signal was found from the double-strange H-dibaryon decaying to Lamb daLambda.
V0 V0 cross section for N on CU target.
V0 V0 cross section for N on C target.
V0 V0 cross section for PI- on CU target.
Differential cross sections for the reaction $\gamma p \to K^{*0} \Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The \kstar was detected by its decay products, $K^+\pi^-$, in the CLAS detector at Jefferson Lab. These data are the first \kstar photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor $K^*$-quark couplings shows good agreement with the data in general, after adjusting the model's two parameters in a fit to our data. Disagreement between the data at forward angles and the global angle-energy fit to the model suggests that the role of scalar $\kappa$ meson exchange in $t$-channel diagrams should be investigated.
Cross sections with total uncertainties.
Cross sections with total uncertainties.