We study the reactions π + p → π + p nπ 0 ( n = 2, 3) at 3.5 GeV/ c , with 940 and 143 events, respectively. Complete final states are recorded and measured in a heavy liquid bubble chamber. We find the cross sections: sigma;(π + p → π + p 2π 0 ) = 1300 ± 210 μ b , σ(π + p → π + p 3π 0 ) = 320 ± 70 μ b , below the values predicted by statistical models from charged pion data. The mass spectra are given and channel separations are performed using Van Hove variables. Our results are in agreement with charged pion experiments. We present a description of the 3 π 0 system, with 61 events. Under certain hypotheses a spin-parity analysis favours 0 − at low mass and 1 − at high mass.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
Using the polarized-beam facility at Argonne National Laboratory and a polarized proton target, simultaneous measurements of the spin parameter P and the spin correlation term CNN were made. Data were obtained and analyzed at beam momenta of 2, 3, 4, and 6 GeV/c in the momentum-transfer-squared interval 0.1≤|t|≤2.8 (GeV/c)2. A preliminary phase-shift analysis of the 2- and 3-GeV/c data is discussed and a comparison with predictions of a particular Regge-pole model at all four energies is made.
No description provided.
No description provided.
No description provided.
We have measured the polarization parameter for proton-proton elastic scattering at p0 = 6 GeV/c for |t|<0.5 (GeV/c)2 using the polarized proton beam at the Argonne Zero Gradient Synchrotron. These data, together with all previous measurements in this t region, are well fitted by the empirical relation P = (0.481±0.010)(−t)12exp(2.291±0.085)t.
No description provided.
Using a secondary pion beam from the Argonne Zero Gradient Synchrotron we have studied the process π−p→φn in the region of the cross-section enhancement near kinematic threshold. For incident momenta between 1.6 and 2 GeV/c, we have determined production and decay angular distributions and extrapolated total cross sections from a sample of about 160 φ's above background. The production and decay distributions are consistent with isotropy over this entire incident-momentum range. The extrapolated total cross section varies between 19 and 25 μb.
Axis error includes +- 16/16 contribution (RES-DEF(RES=PHI,BACK=CORRECTED)).
Axis error includes +- 16/16 contribution (RES-DEF(RES=PHI,BACK=CORRECTED)).
The total cross section for hadron production by high-energy photons has been measured from a number of nuclei ranging from hydrogen to uranium. Some shadowing is observed at a level considerably less than predicted by conventional vector-meson dominance but consistent with a modified theory. The energy dependence predicted by vectormeson dominance is observed. The shadowing in heavy nuclei shows a smooth transition from electroproduction to photoproduction.
No description provided.
Three- and four-body final states with strange particles are studied in π + p and π − p interactions at 16 GeV/ c . We present cross sections and investigate their energy dependence. Production mechanism, resonance production and quantum number transfer are discussed. Strong Y ∗ (1385) production is found in the reaction π + p → Λ K + π + , while the corresponding π − p reaction is dominated by production of K ∗ (890). In the NK K π channels, the K and K are produced mainly at the same vertex, i.e. non-strangeness exchange ΔS = 0 is dominant (about 75% of the cases), whereas in the Λ K ππ channels, the Λ and K are more frequently produced at opposite vertices, i.e. | ΔS | = 1 exchange is important (about 60% of the cases). Results on the polarization of the lambdas produced in the π + p reactions are given.
No description provided.
The reactions π + p giving π 0 Δ ++ (1236), η (549) Δ ++ (1236) and η ′(958) Δ ++ (1236) are studied at 16 GeV/ c . Cross sections, differential cross sections and Δ ++ (1236) spin density matrix elements are presented. The π 0 Δ ++ (1236) differential cross section d σ d t′ indicates a dip towards t ′ = 0 and has a minimum at t ′ ≅ 0.6 GeV 2 . The Δ ++ (1236) spin density matrix elements are consistent with the predictions of the Stodolsky-Sakurai model, except perhaps near the forward direction. For ηΔ ++ (1236), the differential cross section d σ d t′ turns over in the forward direction and presents no further structure. SU(3) sum rules are tested and found to be approximately satisfied. The data agree with factorization of ϱ exchange. The effective A 2 trajectory is calculated and found to be consistent with that reported from the reaction π − p → η n.
No description provided.
NORMALIZED TO THE TOTAL CROSS SECTION OF 49 MUB.
No description provided.
The dominant partial waves of the diffractively produced N π system at low Nπ masses (⩽ 1.4 GeV) are determined in the reactions π ± p → π (N π ) at 16 GeV/ c . A satisfactory description of our data can only be obtained by strong contributions of both a 1 2 − S-wave and a 3 2 + P-wave, violating the Gribov-Morrison rule. Spin and parity of the diffractively produced states are found from the interference between diffraction and Δ (1236) production. The interference term is obtained by an isospin analysis.
No description provided.
<NUCLEON PION> MASS DEPENDENCE.