We have measured muon-proton deep inelastic scattering in the range 0.4<q2<3.6 (GeV/c)2. The data are consistent with muon-electron universality, and if the ratio ρ=νW2(μ−p)νW2(e−p) is fitted with the form ρ=N(1+q2Λ2)−2, we obtain N=0.997±0.043 and Λ−2=+0.006±0.016 (GeV/c)2. This result establishes that |Λ|>~5.1 GeV/c with 95% confidence.
No description provided.
No description provided.
No description provided.
A systematic analysis is presented on the reaction K + p → K ∗0 (890) Δ ++ for nine incident momenta between 4.6–16.0 GeV/ c . Cross sections, differential cross sections and vector meson single density matrix elements are given. As a function of energy, little if any change is observed in either the shapes of the differential cross sections or in the values of the density matrix elements. The data are interpreted in terms of current ideas on t -channel exchange mechanisms.
No description provided.
No description provided.
No description provided.
Experimental results are presented for the available channels in the 1.2 GeV/ c π + p interaction. An isobaric model with incoherent addition of the amplitudes is used to determine the π, Δ and N ∗ abundance rates in the π + π o p final state. The multipole parameters in the density matrix of the Δ ++ are determined as functions of its production angle.
No description provided.
LEGENDRE POLYNOMIAL FIT USED TO CORRECT FOR ELASTIC EVENTS LOST FROM THE FORWARD BIN.
No description provided.
Measurements of π±p, K±p, pp, and p¯p elastic scattering are presented for incident momenta of 3, 3.65, 5, and 6 GeVc and momentum transfers typically 0.03 to 1.8 GeV2. The angle and momentum of the scattered particle were measured with the Argonne Effective Mass Spectrometer for 300 000 events, yielding 930 cross-section values with an uncertainty in absolute normalization of ±4%. Only the K+ and proton data show any significant change in slope of the forward diffraction peak with incident momentum. The particle-antiparticle crossover positions are consistent with no energy dependence, average values being 0.14 ± 0.03, 0.190 ± 0.006, and 0.162 ± 0.004 GeV2 for π' s, K' s, and protons, respectively; these errors reflect both statistics and the ±1.5% uncertainty in particle-antiparticle relative normalization. Differences between particle and antiparticle cross sections isolate interference terms between amplitudes of opposite C parity in the t channel; these differences indicate that the imaginary part of the odd-C nonflip-helicity amplitude has a J0(r(−t)12) structure for −t<0.8 GeV2, as predicted by strong absorption models. The cross-section differences for K± and proton-antiproton are in qualitative agreement with the predictions of ω universality, the agreement improving with increasing energy. The corresponding quark-model predictions relating the π± and K± differences failed by more than a factor of 2. We have combined our π± cross sections with other data to better determine the πN amplitudes in a model-independent way; results of this analysis are presented.
No description provided.
No description provided.
No description provided.
An experiment using optical spark chambers and a neutron time-of-flight hodoscope has been performed at the Argonne National Laboratory on the reaction π−p→ω0n. The differential cross section and the experimentally accessible density-matrix elements were determined in the momentum transfer interval 0.05≤|t|≤1.0 (GeV/c)2 at each of three incident pion momenta 3.65, 4.50, and 5.50 GeV/c. Our results show the following general features: (1) a dip in the forward differential cross section for |t|≤0.2 (GeV/c)2, (2) a slope at larger momentum transfers which increases as the incident pion momentum increases, and (3) no dips in either dσdt or ρ11+ρ1−1, the natural-parity exchange combination, at |t|=0.6 (GeV/c)2.
No description provided.
No description provided.
The reaction p ̄ p → n ̄ n has been studied at an incident antiproton laboratory momentum of 1.13 GeV/ c . The antineutron was identified through a subsequent annihilation on a proton. In all, 2601 identified events were obtained. Total and differential cross sections are presented. Comparison is made with the predictions of the Bryan and Phillips model which, in this energy range, is succesful in describing the related reaction p ̄ p → p ̄ p . Here, the agreement is less good.
No description provided.
The reaction γ d→d ππ , γ p→p ππ and γ n→n ππ were studied in the SLAC 82″ deuterium filled bubble chamber, exposed to a linearly polarized photon beam of 7.5 GeV. All three reactions are dominated by ϱ 0 production. The differential cross section has a slope of ∼6.5 GeV −2 for nucleon reactions and a slope of ∼27 GeV −2 for coherent deuteron reactions. The behaviour of the density matrix elements shows that ϱ production conserves s -channel c.m.s. helicity and is dominated by natural parity exchange.
No description provided.
The polarization parameter in π − p elastic scattering has been measured in the backward angular region at an incident momentum of 6 GeV/ c . The measurements cover the range of four momentum transfer u = 0 to −1 (GeV/ c ) 2 , and were obtained with a high intensity pion beam, a butanol polarized proton target, and arrays of scintillation counter hodoscopes. The polarization is different from zero, in contradiction to the prediction of the naive one trajectory Regge-exchange model. It increases positively with the four-momentum transfer u, reaching a maximum of about 0.4 at u ≈ −0.3 (GeV/c)2. It then decreases and becomes slightly negative beyond u ≈ −0.5 (GeV/c)2. A variety of baryon exchange models are briefly reviewed and none are found to be in complete agreement with all the experimental data.
No description provided.
A study has been made of the individual channels that contribute to the reaction K − p → Λ 0 + neutrals in the K − momentum range from 525 to 820 MeV/ c . Total cross sections are presented for the K − p → Λ 0 η 0 , Σ 0 Σ 0 π 0 , Λ 0 π 0 , Σ 0 π 0 and Σ 0 π 0 π 0 channels and differential cross sections for K − p → Λ 0 π 0 . The data were obtained in a heavy liquid bubble chamber experiment with an average gamma detection efficiency of 70%. Only events with all decay gammas detected were used for analysis. This is the first of a series of papers on this subject and presents the experimental technique in detail.
No description provided.
Total and partial γd, γp and γn reactions were studied in the SLAC 82 inch deuterium-filled bubble chamber, which was exposed to a linearly polarized photon beam at an energy of 7.5 GeV. We report total, topological and channel cross sections for these reactions. The γn average charge multiplicity was found to be one unit of charge less than the γp average charge multiplicity. The isoscolar-isovector interference term as calculated by comparing the γp charge symmetric reactions is found to be small.
No description provided.
CHARGE MULTIPLICITY TOPOLOGICAL CROSS SECTIONS.
No description provided.