This report is based on about 10 500 pp collision events produced in the 81-cm Saclay hydrogen bubble chamber at CERN. Cross-section values for the different identified final states and resonances are given. The isobars N*1238, N*1420, N*1518, N*1688, N*1920, and N*2360 were identified and their production cross-section values were found via a best-fit analysis of different invariant-mass histograms. About 70% of the isobars are connected with the quasi-two-body reactions pp→N*N and pp→N*N*. The reaction pp→nN*1238(pπ+) with a cross section of 3.25±0.16 mb was analyzed in terms of a peripheral absorption model, which was found to be in good agreement with the data. Various decay modes of the N*1518 and N*1688 isobars were observed and their branching ratios determined. The branching ratio of nπ+ to pπ+π− was found to be 0.77±0.45 for N*1518 and 0.67±0.40 for N*1688. The branching ratio of N*1238(pπ+)π− to pπ+π− of N*1688 was estimated to be 0.74±0.14. Pion production turned out to be mainly due to decay of isobars. Production of meson resonances turned out to be less important; the reaction pp→ppω0→ppπ+π−π0 was identified with a cross-section value of 0.11±0.02 mb. Finally, the production of neutral strange particles with a cross section of 0.45±0.04 mb is descussed. Strong formation of Y*1385 is observed.
No description provided.
No description provided.
No description provided.
We report on a study of the differential cross section d σ /d y for the processes of elastic ν μ - and ν μ - electron scattering. The data on which this analysis is based were recorded between 1987 and 1990 with the CHARM II detector in the wide band neutrino beam at the CERN-SPS. For the first time the shapes of these y -distributions have been determined in a model-independent way. A fit to the data yields for the squares of the neutral coupling constants the ratio g R 2 / g L 2 =0.60 ± 0.19 (stat.) ± 0.09 (syst.).
Cross sections in arbitrary units.
Cross sections in arbitrary units.
Value of SIN2TW obtained from data.
The interactions of 775 MeV (kinetic energy) π−-mesons in a hydrogen bubble chamber have been studied. Total and partial crosssections have been determined with the following results: σ (total) = (39.0±1.6) mb, σ (elastic)=(14.8±0.7) mb, σ (π− + p → all neutrals) = (9.0 ± 0.5) mb, σ (π− + p = π− + π+ + n) = (9.8 ± 0.5) mb, and σ (π− + p = π− + p + π0) = (4.8 ± 0.3) mb. The elastic-scattering angular distribution has been fitted with a Legendre polynomial series terminated at the fifth order. Various angular and effective-mass distributions of single-π production are presented and discussed in terms of the Olsson-Yodh and O.P.E. models.
No description provided.
No description provided.
The reactions π − p → p π − and π − p → p ϱ − ( ϱ − → π − π 0 ) at 10 GeV/ c with the proton in the forward direction in the c.m.s. are discussed on the basis of 953 elastic scattering events and 2240 events of the reaction π − p → p π − π 0 . The total backward cross sections are 0.52±0.10 and 1.52±0.28 μ b, respectively. In both cases the production mechanism is compatible with the dominance of the baryonic Δ δ Regge trajectory exchange. The ϱ − decay angular distributions are studied in the u -channel helicity frame and the spin density matrix elements are presented as functions of u .
No description provided.
DATA FROM PRIV COMM WITH B. GHIDINI.
No description provided.
None
DATA ON THE SUM OF ELASTIC AND QUASIELASTIC CROSS SECTIONS.
Report on the investigation of interactions in π−p collisions at a pion momentum of 1.59 GeV/c, by means of the 50 cm Saclay liquid hydrogen bubble chamber, operating in a magnetic field of 17.5 kG. The results obtained concern essentially the elastic scattering and the inelastic scattering accompanied by the production of either a single pion in π−p→ pπ−π0 and nπ−π+ interactions, or by more than one pion in four-prong events. The observed angular distribution for the elastic scattering in the diffraction region, can be approximated by an exponential law. From the extrapolated value, thus obtained for the forward scattering, one gets σel= (9.65±0.30) mb. Effective mass spectra of π−π0 and π−π+ dipions are given in case of one-pion production. Each of them exhibits the corresponding ρ− or ρ0 resonances in the region of ∼ 29μ2 (μ = mass of the charged pion). The ρ peaks are particularly conspicuous for low momentum transfer (Δ2) events. The ρ0 distribution presents a secondary peak at ∼31μ2 due probably to the ω0 → π−π+ process. The branching ratio (ω0→ π+π−)/(ω0→ π+π− 0) is estimated to be ∼ 7%. The results are fairly well interpreted in the frame of the peripheral interaction according to the one-pion exchange (OPE) model, Up to values of Δ2/μ2∼10. In particular, the ratio ρ−/ρ0 is of the order of 0.5, as predicted by this model. Furthermore, the distribution of the Treiman-Yang angle is compatible with an isotropic one inside the ρ. peak. The distribution of\(\sigma _{\pi ^ + \pi ^ - } \), as calculated by the use of the Chew-Low formula assumed to be valid in the physical region of Δ2, gives a maximum which is appreciably lower than the value of\(12\pi \tilde \lambda ^2 = 120 mb\) expected for a resonant elastic ππ scattering in a J=1 state at the peak of the ρ. However, a correcting factor to the Chew-Low formula, introduced by Selleri, gives a fairly good agreement with the expected value. Another distribution, namely the Δ2 distribution, at least for Δ2 < 10 μ2, agrees quite well with the peripheral character of the interaction involving the ρ resonance. π− angular distributions in the rest frame of the ρ exhibit a different behaviour for the ρ− and for the ρ0. Whereas the first one is symmetrical, as was already reported in a previous paper, the latter shows a clear forward π− asymmetry. The main features of the four-prong results are: 1) the occurrence of the 3/2 3/2 (ρπ+) isobar in π−p → pπ+π−π− events and 2) the possible production of the ω0→ π+π−π0 resonance in π−p→ pπ−π+π−π0 events. No ρ’s were observed in four-prong events.
No description provided.
No description provided.
No description provided.
K − p reactions have been studied at 13 different incident momenta between 1138 and 1434 MeV/ c . This interval corresponds to a mass of the K − p system varying from 1858 to 1993 MeV. About 300 000 photographs were taken in the 81 cm Saclay hydrogen bubble chamber exposed to a separated K − beam at the CERN proton-synchrotron. A total of about 44 000 events were analyzed, from which partial and differential cross sections were determined. Polarizations were obtained for the two-body reactions where the decay of the Λ or Σ hyperon allowed their measurement. Data for the two-body channels are presented here as well as for the main quasi-two-body reactions.
PARTIAL CROSS SECTIONS. DATA AT 1.305 TO 1.434 GEV/C FOR FINAL STATES K- P, K- P PI0 AND K- N PI+ COME FROM THE HAIFA GROUP, S. DADO ET AL.
No description provided.
No description provided.
From an experiment done with the CERN Omega spectrometer, triggered by a fast forward proton device, we present results on the differential cross section d σ d u for π − p backward elastic scattering. The d σ d u distribution agrees with an A e Bu law. The compilation of existing results shows a discrepancy between results but the ( d σ d u ) u=0 data fit perfectly an s 2 α 0 −2 dependence, as predicted by a single Δδ Regge trajectory exchange. A search for the reaction π − p → d p , with a fast forward deuteron, which can be produced by a double-baryon exchange mechanism, gives cross-section upper limits of ∼1% of the backward elastic cross section.
UMIN IS 0.0446 GEV**2.
UMIN IS 0.0333 GEV**2.
D(SIG)/DU FITTED FOR 0 < -U < 0.75 GEV**2 TO GIVE SLOPE/INTERCEPT.
The single-pion production reactions $pp\to d\pi^+$, $pp\to np\pi^+$ and $pp\to pp\pi^0$ were measured at a beam momentum of 0.95 GeV/c ($T_p \approx$ 400 MeV) using the short version of the COSY-TOF spectrometer. The implementation of a central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements. Thus all pion production channels were recorded with 1-4 overconstraints. The total and differential cross sections obtained are compared to previous data and theoretical calculations. Main emphasis is put on the discussion of the $pp\pi^0$ channel, where we obtain angular distributions different from previous experimental results, however, partly in good agreement with recent phenomenological and theoretical predictions. In particular we observe very large anisotropies for the $\pi^0$ angular distributions in the kinematical region of small relative proton momenta revealing there a dominance of proton spinflip transitions associated with $\pi^0$ $s$- and $d$-partial waves and emphasizing the important role of $\pi^0$ d-waves.
Measured angular distribution for elastic P P scattering in the CM system normalised to the data in the SAID database (Arndt et al. PR C62,034005(2000). This measurement is made to determine the luminosity.
Deep inelastic scattering and its diffractive component, ep -> e'gamma*p ->e'XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb-1. The measurement covers a wide range in the gamma*p c.m. energy W (37 - 245 GeV), photon virtuality Q2 (2.2 - 80 GeV2) and mass Mx. The diffractive cross section for Mx > 2 GeV rises strongly with W: the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single Pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to gamma*p scattering. Above Mx of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(beta,xpom,Q2), of the proton. For fixed beta, the Q2 dependence of xpom F2D(3) changes with xpom in violation of Regge factorisation. For fixed xpom, xpom F2D(3) rises as beta -> 0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 2.7 GeV**2.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 4.0 GeV**2.
Cross section for the diffractive scattering process GAMMA* P --> DD X for a diffractive mass of 1.2 GeV and Q**2 = 6.0 GeV**2.