None
No description provided.
None
No description provided.
Results of a high-statistics study of π++p→ρ++p at 1.55-1.84 GeVc are consistent with dominance of π and ω exchange close to threshold. A pronounced dip in ρ00sdσdt at −t≃0.4 GeV2 may be attributed to pion exchange with strong absorption.
No description provided.
No description provided.
No description provided.
Using an 11-GeV bremsstrahlung beam and the SLAC 20-GeV spectrometer, we have measured K + missing mass spectra from hydrogen and deuterium at five angles with momentum transfer squared ranging from 0.025 to 0.46 GeV 2 . Steps in the spectra as a function of missing mass were found corresponding to production of Λ , Σ , Σ 1385 + Λ 1405 and Λ 1520 . The ratio Σ − and Σ 0 production is not consistent with pure isotopic spin 1 2 in the t -channel for the reaction γ N→K + Σ . The cross sections for γ N → K + Σ 1385 compared with γ N→ πΔ violate an SU(3) prediction.
'3'.
No description provided.
No description provided.
The reactions γA→π±A* have been studied at four-momentum transfers −t<~0.5 GeV2 for seven elements ranging from hydrogen to lead. Exclusion-principle suppression is clearly visible at small-momentum transfer. Neither the A dependence nor the energy dependence of the cross sections agrees with the predictions of the vector-dominance model. The ratio of π−π+ production requires equal spatial distributions for the protons and neutrons in nuclei. Some K+ data are also presented.
No description provided.
No description provided.
No description provided.
Cross sections for the reactions γp→K+Λ and γp→K+Σ0 have been measured at squared four-momentum transfer (−t) from 0.005 to 2 GeV2, at photon energies 5, 8, 11, and 16 GeV. For −t>0.2 GeV2 each of the K+ cross sections is about ⅓ of the π+n photoproduction cross section, having nearly the same energy and momentum-transfer dependence. The K+ cross sections fall off at small |t|, however, in contrast to the sharp forward spike seen in π+n; this leads to a disagreement with an SU(3) prediction for −t<0.1 GeV2. The ratio of K+Σ0 to K+Λ cross sections is typically between 0.5 and 1.0.
'1'.
'1'.
'1'.
The cross section for γp→π−Δ++(1236), measured at 5, 8, 11, and 16 GeV from nearzero momentum transfer to -1 GeV2 (-2 GeV2 at 16 GeV), rises from small t to a maximum near −t=mπ2, then falls as e12t out to −t≈0.2 GeV2, after which it becomes roughly equal in slope and magnitude to the single π+ photoproduction cross section (e3t). At fixed t, the cross section varies as k−2, where k is the laboratory photon energy. The results do not agree well with the simple vector-dominance model.
'1'.
'1'.
'1'.
The differential cross sections for single-π+ photoproduction from hydrogen have been measured over a range of momentum transfers from -2×10−4 to -2 (GeV/c)2, and photon energies from 5 to 16 GeV. The differential cross section increases by roughly a factor of 2 as the magnitude of the square of the momentum transfer decreases from 0.02 (GeV/c)2. The cross section falls approximately as exp(−3|t|) at large momentum transfers, with a similar momentum-transfer dependence of the cross section at all photon energies studied.
No description provided.
No description provided.
No description provided.
Three new bosons, referred to as S, T and U, have been observed in the reaction π - + p → p + X - using the missing-mass spectrometer; their masses are 1929, 2195 and 2382 MeV, respectively. Their physical widths are equal to our experimental resolution and compatible with zero-width, with the upper limits: Γ ≤ 35, ≤ 13 and ≤ 30 MeV, respectively. They are produced with the differential cross section d σ/d t between 20 and 40 microbarn per (GeV/ c ) 2 at an average t = 0.3 (GeV/ c ) 2 .
No description provided.