The analysis of exclusive neutral strange particle production in the reactions π − p → K° Λ + K° Σ ° and p p → Λ Λ + Λ Σ° + c.c. at 3.15, 4.95, 7.9 and 12 GeV/ c yielded the differential cross section distributions up to about 90° c.m.s. scattering angle and the Λ-particle polarization at large transverse momentum. Applying a fit to d σ /d t ∞ s − n resulted in n = 8.6 ± 0.9 for the K° Λ + K° Σ° final state which is compatible with the quark counting rule n = 8 for meson-baryon reactions. The average Λ polarization around t = −1.6 (GeV/ c ) 2 was P Λ = 0.79 ± 0.17 at 3.15 GeV/ c beam energy.
No description provided.
No description provided.
No description provided.
The reaction K − n → K − π + π − n has been studied in the SLAC 82″ liquid deuterium bubble chamber with a beam momentum of 12 GeV/ c . Although the kinematic fit for this final state has only one constraint, nonetheless a reasonably pure sample has been obtained. The cross section for the reaction is 1.02 ± 0.10 mb. The process K − n → K ∗0 890 Δ − is observed with cross section 36 ± 9 μ b and t -slope of 10 ± 2 (GeV/ c ) −2 . A kaon diffraction dissociation sample has been obtained, although the Q-signal is not so strong as in experiments with proton targets. Neutron dissociation into n π + π − is also observed with similar properties to those of proton dissociation into p π + π − , but with a broader t -distribution.
No description provided.
SLOPE FROM FIT TO DN/DT FOR -TP < 0.3 GEV**2.
No description provided.
The elastic, the pion-production, and the multipion-annihilation cross sections for antiproton-proton interactions at 3.28 and 3.66 BeV/c incident antiproton momenta have been measured. A comparison of the elastic interactions at 3.28 BeV/c with a purely-absorbing disc optical model gave a best value for the radius of interaction of 1.3 F. The real part of the forward scattering amplitude has been found to be less than 20% of the imaginary part. A study of the asymmetries in double elastic scatters yielded a value for a polarizing power of the hydrogen consistent with zero when averaged over production angles.
Results are presented from a study of inclusive neutral strange particle production by a 147 GeV/ c tagged π + /K + /p beam in the Fermilab 30-inch hydrogen bubble chamber. The experiment made use of the proportional hybrid spectrometer system. Results are based on 995 K S 0 , 485 Λ, and 83 Λ found in a sample of 132 000 pictures. Cross sections are given for inclusive production of these particles by each of the three beam particles, and comparisons are made with measurements at other energies. Topological cross sections are also calculated, and KNO multiplicity scaling is investigated. Distributions are presented of invariant cross sections as functions of the Feynman scaling variable x and c.m. rapidity y . The transverse momentum-squared distributions with their fitted slopes are also given. Comparisons are made of the production characteristics for the three beam types.
No description provided.
No description provided.
No description provided.
We have studied the inclusive production of K*±(890) and Y*±(1385) in pp, π+p, and K+p interactions at 147 GeV/c. The experiment used the Fermilab 30-inch hydrogen bubble chamber with the hybrid spectrometer system. Results are based on a sample of 1916 observed KS and 932 observed A. Inclusive cross sections are given for K*± and Y*± production from the three beams, and comparisons are made with experiments at other energies. Feynman-x and transverse-momentum-squared distributions are also calculated. The results suggest that the K*− is entirely produced in the central region, while the K*+ includes a component from beam fragmentation. Comparisons are made with the additive quark model.
No description provided.
In an experiment with the 30-inch Hybrid Spectrometer at Fermilab we have obtained the inclusive and semi-inclusive production cross sections of the ϱ0 meson using a conventional background subtraction technique. Production cross sections for the ϱ0 are derived as a function of the Feynman scaling variablex, and the transverse variablespt2 andEt=(pt2+M2)1/2. The longitudinal distributions are compared with the (1−x) dependence of the proton and meson valence quark structure functions, using various forms of recombination and fragmentation models. The transverse distributions are compared with thermodynamic models. We give density matrix elements for the ϱ0 production from pions in the extreme forward region.
Charmonium is a valuable probe in heavy-ion collisions to study the properties of the quark gluon plasma, and is also an interesting probe in small collision systems to study cold nuclear matter effects, which are also present in large collision systems. With the recent observations of collective behavior of produced particles in small system collisions, measurements of the modification of charmonium in small systems have become increasingly relevant. We present the results of J/ψ measurements at forward and backward rapidity in various small collision systems, p+p, p+Al, p+Au and 3He+Au, at √sNN =200 GeV. The results are presented in the form of the observable RAB, the nuclear modification factor, a measure of the ratio of the J/ψ invariant yield compared to the scaled yield in p+p collisions. We examine the rapidity, transverse momentum, and collision centrality dependence of nuclear effects on J/ψ production with different projectile sizes p and 3He, and different target sizes Al and Au. The modification is found to be strongly dependent on the target size, but to be very similar for p+Au and 3He+Au. However, for 0%–20% central collisions at backward rapidity, the modification for 3He+Au is found to be smaller than that for p+Au, with a mean fit to the ratio of 0.89±0.03(stat)±0.08(syst), possibly indicating final state effects due to the larger projectile size.
J/psi nuclear modification in p+Au collisions as a function of nuclear thickness (T_A). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
A search for the flavor-changing neutral-current decay $B^{+}\to K^{+}\nu\bar{\nu}$ is performed at the Belle II experiment at the SuperKEKB asymmetric energy electron-positron collider. The results are based on a data sample corresponding to an integrated luminosity of $63\,\mbox{fb}^{-1}$ collected at the $\Upsilon{(4S)}$ resonance and a sample of $9\,\mbox{fb}^{-1}$ collected at an energy $60\mathrm{\,Me\kern -0.1em V}$ below the resonance. A novel measurement method is employed, which exploits topological properties of the $B^{+}\to K^{+}\nu\bar{\nu}$ decay that differ from both generic bottom-meson decays and light-quark pair production. This inclusive tagging approach offers a higher signal efficiency compared to previous searches. No significant signal is observed. An upper limit on the branching fraction of $B^{+}\to K^{+}\nu\bar{\nu}$ of $4.1 \times 10^{-5}$ is set at the 90% confidence level.
We have studied the reactionspp→ppπ+π-,K+p→K+pπ+π−π, π+p→ π+,pπ+π− and π−p →π+π− at 147 GeV/c using the 30-inch Fermilab hybrid system. All four reactions were detected with the same apparatus and analyzed in the same way. The energy dependence of the channel cross section was found to beAp−0.6+B for thepp reaction andAp−1+B for the other three. About 90% of the cross section at 147 GeV/c can be accounted for by either beam or target diffraction. Some of the remaining cross section may come from double Pomeron exchange reactions which we tried to isolate. We have tested the hypothesis of a factorizable Pomeron and our data indicates a violation of this hypothesis. We show that the 3π mass enhancement in the mass region 1.2–1.4 GeV is diffractively produced in the π± beam reactions. Fourprong, four-constraint and six-prong, four-constraint cross sections are reported.
No description provided.
CROSS SECTIONS FOR DIFFRACTION DISSOCIATION OF THE TARGET. FEYNMAN X OF THE FASTEST OUTGOING PARTICLE >0.96.
STUDY OF DIFFRACTIVE 3PI PRODUCTION IN THE A1-A2 REGION.