A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics, with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant production of a $Z'$ mediator. The ATLAS experiment dataset collected at the Large Hadron Collider from 2015 to 2018 is used, consisting of proton-proton collisions at $\sqrt{s}$ = 13 TeV and corresponding to an integrated luminosity of 140 fb$^{-1}$. The $Z'$ mediator is considered to decay to two dark quarks, which each hadronize and decay to showers containing both dark and Standard Model particles, producing a topology of interacting and non-interacting particles within a jet known as ``semi-visible". Machine learning methods are used to select these dark showers and reject the dominant background of mismeasured multijet events, including an anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A resonance search is performed by fitting the transverse mass spectrum based on a functional form background estimation. No significant excess over the expected background is observed. Results are presented as limits on the production cross section of semi-visible jet signals, parameterized by the fraction of invisible particles in the decay and the $Z'$ mass, and by quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.
Acceptance times efficiency weighted yields across the signal grid.
The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.2 signal points.
The 95% CL limits on the cross-section $\sigma(pp \rightarrow Z' \rightarrow \chi \chi$) times branching ratio B in fb with all statistical and systematic uncertainties, for the $R_{\text{inv}}=$0.4 signal points.
Top-quark pair production is observed in lead-lead (Pb+Pb) collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb$^{-1}$. Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross-section is $\sigma_{t\bar{t}} = 3.6\;^{+1.0}_{-0.9}\;\mathrm{(stat.)}\;^{+0.8}_{-0.5}\;\mathrm{(syst.)} ~\mathrm{\mu b}$, with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the pre-equilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early universe.
The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR1 (Signal Region 1 (SR\(_1\)):} Events with exactly one muon and one oppositely charged electron, a dilepton invariant mass \( m_{e\mu} \geq 30 \, \mathrm{GeV} \), at least two jets with \( p_T \geq 35 \, \mathrm{GeV} \), and a dilepton transverse momentum \( p_T^{e\mu} > 40 \, \mathrm{GeV} \). This region is expected to be signal-dominated) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.
The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR2 (Signal Region 2 (SR\(_2\)):} Events meeting the same criteria as SR\(_1\), but with a dilepton transverse momentum \( p_T^{e\mu} \leq 40 \, \mathrm{GeV} \). This region includes events with a lower \( p_T^{e\mu} \) and has a larger background contribution) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.
The impact of systematic uncertainties on the fitted signal-strength parameter $\hat{\mu}$ for the combined fit of all channels. Only the 10 most significant systematic uncertainties are shown and listed in decreasing order of their impact on $\mu$ on the $y$-axis. The empty (filled) blue/cyan boxes correspond to the pre-fit (post-fit) impact on $\mu$, referring to the upper $x$-axis. The impact of each systematic uncertainty, $\Delta \mu$, is calculated by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the corresponding nuisance parameter $\theta$ to its best-fit value $\hat{\theta}$ shifted by its pre-fit (post-fit) uncertainties $\hat{\theta} \pm \Delta \theta(\hat{\theta} \pm \Delta \hat{\theta})$. The black points, which refer to the lower $x$-axis, show the pulls of the fitted nuisance parameters, i.e., the deviations of the fitted parameters $\hat{\theta}$ from their nominal values $\theta_0$, normalized to their nominal uncertainties $\Delta \theta$. The black lines show the post-fit uncertainties of the nuisance parameters, relative to their nominal uncertainties, which are indicated by the dashed lines.
A search for the production of top-quark pairs with the same electric charge ($tt$ or $\bar{t}\bar{t}$) is presented. The analysis uses proton-proton collision data at $\sqrt{s}=13$ TeV, recorded by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with two same-charge leptons and at least two $b$-tagged jets are selected. Neural networks are employed to define two selections sensitive to additional couplings beyond the Standard Model that would enhance the production rate of same-sign top-quark pairs. No significant signal is observed, leading to an upper limit on the total production cross-section of same-sign top-quark pairs of 1.6 fb at 95$\%$ confidence level. Corresponding limits on the three Wilson coefficients associated with the ${\cal O}_{tu}^{(1)}$, ${\cal O}_{Qu}^{(1)}$, and ${\cal O}_{Qu}^{(8)}$ operators in the Standard Model Effective Field Theory framework are derived.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{ctu --}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
Distributions of the $\mathrm{NN^{SvsB}}$ output for data and the expected background after the likelihood fit in the $SR_{cQu ++}$ signal region. The post-fit background expectations are shown as filled histograms, the combined pre-fit background expectations are shown as dashed lines. The signal distribution using the Wilson coefficient values $c_{tu}^{(1)}=0.04$, $c_{Qu}^{(1)}=0.1$, $c_{Qu}^{(8)}=0.1$ is shown with a dotted line, normalized to the same number of events as the background.
Differential measurements of Higgs boson production in the $\tau$-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF), $VH$ and $t\bar{t}H$ associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb$^{-1}$ of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: the Simplified Template Cross-Section (STXS) approach and an Unfolded Fiducial Differential measurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson's transverse momentum ($p^{\text{H}}_\text{T}$), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets ($m_{jj}$). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction for $m_{jj}>1.5$ TeV and $p^{\text{H}}_\text{T}>200$ GeV ($p^{\text{H}}_\text{T}<200$ GeV) is ${1.29}^{+0.39}_{-0.34}$ (${0.12}^{+0.34}_{-0.33}$). This is the first VBF measurement for the higher-$p^{\text{H}}_\text{T}$ criteria, and the most precise for the lower-$p^{\text{H}}_\text{T}$ criteria. The fiducial cross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed $\Delta\phi_{jj}$ between the two leading jets. The measurements have a precision of 30%-50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient $c_{H\tilde{W}}$.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_0 signal region for $p_{\text{T}}^{H}>200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
Distribution of the reconstructed $\tau\tau$ invariant mass ($m_{\tau\tau}$) for all events in the VBF_1 signal region for $p_{\text{T}}^{H}<200$ GeV. The observed Higgs boson signal corresponds to $(\sigma\times B)/(\sigma\times B)_{\text{SM}}\,=\,0.99$. Entries with values above the $x$-axis range are shown in the last bin of each distribution. The prediction for each sample is determined from the likelihood fit performed to measure the total $pp\rightarrow H\rightarrow\tau\tau$ cross-section.
A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.
Relative uncertainty for the integrated $Z -> \mu^{+} \mu^{-}$ cross-section measurement. The total uncertainty is the quadratic sum of uncertainties from statistical, systematic and luminosity contributions.
Final state radiation correction used in the $y^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
Final state radiation correction used in the $p_{T}^{Z}$ cross-section measurement. The first uncertainty is statistical and the second is systematic.
The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.
Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.
Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.
The cross-section for inelastic proton-proton collisions at a centre-of-mass energy of 13\,TeV is measured with the LHCb detector. The fiducial cross-section for inelastic interactions producing at least one prompt long-lived charged particle with momentum $p>2$\,GeV/$c$ in the pseudorapidity range $2<\eta<5$ is determined to be $\sigma_{\rm acc}= 62.2 \pm 0.2 \pm 2.5$\,mb. The first uncertainty is the intrinsic systematic uncertainty of the measurement, the second is due to the uncertainty on the integrated luminosity. The statistical uncertainty is negligible. Extrapolation to full phase space yields the total inelastic proton-proton cross-section $\sigma_{\rm inel}= 75.4 \pm 3.0 \pm 4.5$\,mb, where the first uncertainty is experimental and the second due to the extrapolation. An updated value of the inelastic cross-section at a centre-of-mass energy of 7\,TeV is also reported.
The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p > 2.0$ GeV/$c$ and $2.0 < \eta < 5.0$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is found negligible. A particle is long-lived if its proper (mean) lifetime is larger than 30 ps, and it is prompt if it is produced directly in the $pp$ interaction or if none of its ancestors is long-lived.
The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 13$ TeV, extrapolated from Monte Carlo in similar way to measurement at $\sqrt{s}=7$ TeV.
Update of the total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV due to improved calibration of the luminosity scale.
Forward top quark pair production is studied in $pp$ collisions in the $\mu eb$ final state using a data sample corresponding to an integrated luminosity of 1.93 fb$^{-1}$ collected with the LHCb experiment at a centre-of-mass energy of 13 TeV. The cross-section is measured in a fiducial region where both leptons have a transverse momentum greater than 20 GeV and a pseudorapidity between 2.0 and 4.5. The quadrature sum of the azimuthal separation and the difference in pseudorapidities, denoted $\Delta R$, between the two leptons must be larger than 0.1. The $b$-jet axis is required to be separated from both leptons by a $\Delta R$ of 0.5, and to have a transverse momentum in excess of 20 GeV and a pseudorapidity between 2.2 and 4.2. The cross-section is measured to be $$\sigma_{t\bar{t}}= 126\pm19\,(\mathrm{stat})\pm16\,(\mathrm{syst})\pm5\,(\mathrm{lumi})\,\,\mathrm{ fb}$$ where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measurement is compatible with the Standard Model prediction.
The measured fiducial cross section. The uncertainty is split into statistical, systematic and uncertainty due to luminosity.
Measurements are presented of electroweak boson production using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$. The analysis is based on an integrated luminosity of $2.0\mathrm{\,fb}^{-1}$ recorded with the LHCb detector. The bosons are identified in the $W\rightarrow\mu\nu$ and $Z\rightarrow\mu^{+}\mu^{-}$ decay channels. The cross-sections are measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$, with transverse momenta $p_{\rm T} > 20{\mathrm{\,Ge\kern -0.1em V\!/}c}$ and, in the case of the $Z$ boson, a dimuon mass within $60 < M_{\mu^{+}\mu^{-}} < 120{\mathrm{\,Ge\kern -0.1em V\!/}c^{2}}$. The results are \begin{align*} \sigma_{W^{+}\rightarrow\mu^{+}\nu} &= 1093.6 \pm 2.1 \pm 7.2 \pm 10.9 \pm 12.7{\rm \,pb} \, , \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}} &= \phantom{0}818.4 \pm 1.9 \pm 5.0 \pm \phantom{0}7.0 \pm \phantom{0}9.5{\rm \,pb} \, , \sigma_{Z\rightarrow\mu^{+}\mu^{-}} &= \phantom{00}95.0 \pm 0.3 \pm 0.7 \pm \phantom{0}1.1 \pm \phantom{0}1.1{\rm \,pb} \, , \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. The evolution of the $W$ and $Z$ boson cross-sections with centre-of-mass energy is studied using previously reported measurements with $1.0\mathrm{\,fb}^{-1}$ of data at $7\mathrm{\,Te\kern -0.1em V}$. Differential distributions are also presented. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.
Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.
The production of $\Upsilon$ mesons in $pp$ collisions at $\sqrt=7$ and $8\,\mathrm{TeV}$ is studied with the LHCb detector using data samples corresponding to an integrated luminosity of $1\,\mathrm{fb}^{-1}$ and $2\,\mathrm{fb}^{-1}$ respectively. The production cross-sections and ratios of cross-sections are measured as functions of the meson transverse momentum $p_T$ and rapidity $y$, for $p_T<30\,\mathrm{GeV}/c$} and $2.0<y<4.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)] for $2.0 < y < 2.5$.
Double-differential cross-section $\mathrm{d}^2 \sigma ( pp \to ( \Upsilon \to \mu^+ \mu^- ) X ) / \mathrm{d} p_T/\mathrm{d}y$ [pb/(GeV/$c$)].