The semi-inclusive reaction e+ p -> e+ X p was studied with the ZEUS detector at HERA using an integrated luminosity of 12.8 pb-1. The final-state proton, which was detected with the ZEUS leading proton spectrometer, carried a large fraction of the incoming proton energy, xL>0.32, and its transverse momentum squared satisfied pT^2<0.5 GeV^2/ the exchanged photon virtuality, Q^2, was greater than 3 GeV^2 and the range of the masses of the photon-proton system was 45<W<225 GeV. The leading proton production cross section and rates are presented as a function of xL, pT^2, Q^2 and the Bjorken scaling variable, x.
Double differential cross sections as a funtion of PT**2 for the XL range 0.32 TO 0.38. The methods S123 and S456 are the results using different stations of the silicon microstrip detectors.
Double differential cross sections as a funtion of PT**2 for the XL range 0.38 TO 0.44. The methods S123 and S456 are the results using different stations of the silicon microstrip detectors.
Double differential cross sections as a funtion of PT**2 for the XL range 0.44 TO 0.50. The methods S123 and S456 are the results using different stations of the silicon microstrip detectors.
Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of 127 pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different colour configurations. Fixed-order perturbative QCD calculations assuming the values of the colour factors C_F, C_A and T_F as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of colour configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N.
Integrated 3-jet photoproduction cross section.
Integrated 3-jet cross sections in NC DIS.
Normalized differential 3-jet photoproduction cross section as a function of THETA(H).
Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120pb^-1. The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models.
Total cross sections for electrons from beauty and charm quarks.
Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.
Differential electron cross sections as a function of PT and ETARAP from beauty and charm quarks.
Electroproduction of exclusive $\phi$ vector mesons has been studied with the CLAS detector in the kinematical range $1.6\leq Q^2\leq 3.8$ GeV$^{2}$, $0.0\leq t^{\prime}\leq 3.6$ GeV$^{2}$, and $2.0\leq W\leq 3.0$ GeV. The scaling exponent for the total cross section as $1/(Q^2+M_{\phi}^2)^n$ was determined to be $n=2.49\pm 0.33$. The slope of the four-momentum transfer $t'$ distribution is $b_{\phi}=0.98 \pm 0.17$ GeV$^{-2}$. The data are consistent with the assumption of s-channel helicity conservation (SCHC). Under this assumption, we determine the ratio of longitudinal to transverse cross sections to be $R=0.86 \pm 0.24$. A 2-gluon exchange model is able to reproduce the main features of the data.
Axis error includes +- 18.6/18.6 contribution.
Axis error includes +- 18.6/18.6 contribution.
Axis error includes +- 18.6/18.6 contribution.
Deep inelastic scattering and its diffractive component, $ep \to e^{\prime}\gamma^* p \to e^{\prime}XN$, have been studied at HERA with the ZEUS detector using an integrated luminosity of 52.4 pb$^{-1}$. The $M_X$ method has been used to extract the diffractive contribution. A wide range in the centre-of-mass energy $W$ (37 -- 245 GeV), photon virtuality $Q^2$ (20 -- 450 GeV$^2$) and mass $M_X$ (0.28 -- 35 GeV) is covered. The diffractive cross section for $2 < M_X < 15$ GeV rises strongly with $W$, the rise becoming steeper as $Q^2$ increases. The data are also presented in terms of the diffractive structure function, $F^{\rm D(3)}_2$, of the proton. For fixed $Q^2$ and fixed $M_X$, $\xpom F^{\rm D(3)}_2$ shows a strong rise as $\xpom \to 0$, where $\xpom$ is the fraction of the proton momentum carried by the Pomeron. For Bjorken-$x < 1 \cdot 10^{-3}$, $\xpom F^{\rm D(3)}_2$ shows positive $\log Q^2$ scaling violations, while for $x \ge 5 \cdot 10^{-3}$ negative scaling violations are observed. The diffractive structure function is compatible with being leading twist. The data show that Regge factorisation is broken.
Proton structure function F2 at Q**2 = 25 GeV**2.
Proton structure function F2 at Q**2 = 35 GeV**2.
Proton structure function F2 at Q**2 = 45 GeV**2.
The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of $61 \pbi$. The dijet cross section has been measured for virtualities of the exchanged virtual photon, $5 < Q^2 < 100 \gev^2$, and $\gamma^{*} p$ centre-of-mass energies, 100 < W < 250 GeV. The jets, identified using the inclusive k_{T} algorithm in the $\gamma^* p$ frame, were required to have a transverse energy $E^*_{T, \rm jet} > 4 \gev$ and the jet with the highest transverse energy was required to have $E^*_{T,\rm jet} > 5 \gev$. All jets were required to be in the pseudorapidity range $-3.5 < \eta^*_{\rm jet} < 0$. The differential cross sections are compared to leading-order predictions and next-to-leading-order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data.
Total di-jet cross section SIG as a function of Q**2 .
Distribution of D(SIG)/DQ**2 as a function of Q**2 .
Distribution of D(SIG)/DW as a function of W .
Exclusive rho^0 electroproduction at HERA has been studied with the ZEUS detector using 120 pb^{-1} of integrated luminosity collected during 1996-2000. The analysis was carried out in the kinematic range of photon virtuality 2 < Q^2 < 160 GeV$^2, and gamma^* p centre-of-mass energy 32 < W < 180 GeV. The results include the Q^2 and W dependence of the gamma^* p --> rho^0 p cross section and the distribution of the squared-four-momentum transfer to the proton. The helicity analysis of the decay-matrix elements of the rho^0 was used to study the ratio of the gamma^* p cross section for longitudinal and transverse photon as a function of Q^2 and W. Finally, an effective Pomeron trajectory was extracted. The results are compared to various theoretical predictions.
Measurement of the spin density matrix element r_04_00 as a function of Q**2.
Measurement of the spin density matrix element RE(r_04_10) as a function of Q**2.
Measurement of the spin density matrix element r_04_1-1 as a function of Q**2.
Forward jet cross sections have been measured in neutral current deep inelastic scattering at low Bjorken-x with the ZEUS detector at HERA using an integrated luminosity of ${81.8 \rm pb}^{-1}$. Measurements are presented for inclusive forward jets as well as for forward jets accompanied by a dijet system. The explored phase space, with jet pseudorapidity up to 4.3 is expected to be particularly sensitive to the dynamics of QCD parton evolution at low x. The measurements are compared to fixed-order QCD calculations and to leading-order parton-shower Monte Carlo models.
Differential cross section DSIG/DQ**2 in bins of Q**2 .
Differential cross section DSIG/DX in bins of X .
Differential cross section DSIG/DET(P=4) in bins of ET(P=4) .
Three- and four-jet final states have been measured in photoproduction at HERA using the ZEUS detector with an integrated luminosity of 121 pb^-1. The results are presented for jets with transverse energy E_T^jet>6 GeV and pseudorapidity |eta^jet|<2.4, in the kinematic region given by the virtuality of the photon Q^2<1 GeV^2 and the inelasticity 0.2<y<0.85 and in two mass regions defined as 25<M_nj<50 GeV and M_nj>50 GeV, where M_nj is the invariant mass of the n-jet system. The four-jet photoproduction cross section has been measured for the first time and represents the highest-order process studied at HERA. Both the three- and four-jet cross sections have been compared with leading-logarithmic parton-shower Monte Carlo models, with and without multi-parton interactions. The three-jet cross sections have been compared to an order(alpha alpha_s^2) perturbative QCD calculation.
Cross section D(SIG)/M(P=4_5_6) as a function of M(P=4_5_6) .
Cross section D(SIG)/M(P=4_5_6_7) as a function of M(P=4_5_6_7) .
Cross section D(SIG)/X(C=GAMMA,OBS) as a function of X(C=GAMMA,OBS) in two jet invariant mass regions, 25 to 50 and > 50 GeV .
The cross section for high-E_T dijet production in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb-1. The events were required to have a virtuality of the incoming photon, Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the range 142 < W < 293 GeV. Events were selected if at least two jets satisfied the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to the parton distributions in the photon and proton and effects beyond next-to-leading order in QCD. Hence these data can be used to constrain further the parton densities in the proton and photon.
Cross section D(SIG)/(ET(P=4)+ET(P=5))/2 as a function of (ET(P=4)+ET(P=5))/2 for X(C=GAMMA,OBS) > 0.75 .
Cross section D(SIG)/(ET(P=4)+ET(P=5))/2 as a function of (ET(P=4)+ET(P=5))/2 for X(C=GAMMA,OBS) <= 0.75 .
Cross section D(SIG)/ET(P=4) as a function of ET(P=4) for X(C=GAMMA,OBS) > 0.75 .