Results of fitting the differential distributions in x F and p T 2 of D mesons produced in 400 GeV/ c p-p interactions to the form d 2 σ d x F d p T 2 ∝(1−x F ) n exp [−(p T 2 /〈p T 2 〉)] are discussed. The D + distribution is found to be relatively hard [ n =3.1±0.8〈 P t 2 〉=1.32±0.27 (GeV/ c ) 2 ] and the D̄ 0 distribution relatively soft [ n =8.1±1.9,〈 p T 2 〉=0.62±0.14 (GeV/ c ) 2 ] compared to the average for all D's [ n =4.9±0.5,〈 p T 2 〉=0.99±0.10 (GeV/ c ) 2 ]. It is suggested that these distributions could reflect contribution of leading di-quarks in pp collisions. Comparison is made with evidence for leading quarks in charm production in 360 GeV/ cπ − p interactions.
The invariant (C=INV) and non-invariant (C=NON-INV) distributions are fitted to (1-XL)**POWER. Pt distribution is fitted to EXP(-PT**2/SLOPE).
We have measured the inclusive production properties of D and D messons produced from pp interactions at s =27.4 GeV . The differential production cross section is well represented by the empirical form d 2 σ d x F d P 2 T = 1 2 [σ ( D / D )(n+1)b](1−|x F |) n exp (−bp 2 T ) with n=4.9 ± 0.5, b=(1.0±0.1)( GeV /c) −2 , and the inclusive D / D cross section σ ( D / D ) is (30.2±3.3) ωb. The QCD fusion model predicts D / D production which is in good agreement with our data except for the magnitude of the cross section which depends sensitively on the assumed mass of the charm quark.
No description provided.
No description provided.
No description provided.
Inclusive ϕ meson production has been measured for 100 GeV/c and 200 GeV/c incident π−,\(\bar p\) andK−, and for 120 GeV/c and 200 GeV/c incident π+,p andK+, using a Be target. A total of 630,000 ϕ mesons has been recorded in the kinematic range 0
Note that the data is plotted in fig. 5 a factor 5 too large. The numbers here are correct.
Note that the data is plotted in fig 5 a factor of 5 too large. The numbers here are correct.
Note that the data is plotted in fig. 5 a factor of 5 too large. CT = The numbers here are correct.
In diffractive photoproduction ofηπ+π−, the two-body substatesηρ0 andA2π are found to contribute significantly to the cross-section forηπ+π− masses below 2.4 GeV. From a spin-parity analysis the branching ratio, ρ′(1600)→ηρ/ρ′(1600)→, is determined to be <0.02 at the 68.3% confidence level. TheA2π component shows an enhancement around 1.7 GeV. The spin-parity analysis indicates a probable contribution to this signal from exclusive photoproduction of theg(1690).
No description provided.
Not corrected for 35% background under the eta --> gamma gamma peak.
Not corrected for 35% background under the ETA --> GAMMA GAMMA peak.
Exclusive ϱ 0 production has been measured in 120, 200 and 280 GeV muon-proton interactions at high Q 2 (1 GeV 2 < Q 2 < 25 GeV 2 ) and W (6 GeV < W < 19 GeV). The photoproduction cross section decreases as 1/ Q 4 . A shallow t distribution, typical of a hard scattering process is observed and the ϱ 0 is found to be dominantly in the helicity zero spin state. The ϱ 0 s are mainly produced by transverse photons and s -channel helicity conservation seems to be invalid. The data cannot be described by the vector meson dominance model. These data show that at high Q 2 even exclusive ϱ 0 muoproduction is a hard scattering process and that the soft hadron-like properties of the photon have disappeared.
No description provided.
No description provided.
SYSTEMATIC ERROR ON SLOPE IN 0.8.
The real-to-imaginary ratio of the p p forward elastic scattering amplitude has been measured at the LEAR facility of CERN by the Coulomb-nuclear interference method at seven beam momenta between 181 and 590 MeV/ c . The ratio is positive at 590 MeV/ c , becomes negative below 500 MeV/ c , reaches a minimum at 260 MeV/ c and then crosses zero again at about 230 MeV/ c .
No description provided.
No description provided.
No description provided.
We present measurements of the αα elastic scattering differential cross section at √ s = 126 GeV in the range 0.05 ⩽ ‖ t ‖
ERRORS ARE STATISTICAL ONLY.
EXPONENTIAL FIT TO CROSS SECTION BELOW T = 0.075 GEV**2.
OPTICAL THEOREM CALCULATION OF THE TOTAL CROSS SECTION ASSUMING RHO IS ZERO.
The reaction γp→ρfast0pπ+π− has been studied with the linearly polarized 20-GeV monochromatic photon beam at the SLAC Hybrid Facility to test the prediction of s-channel helicity conservation in inelastic diffraction for t’<0.4 (GeV/c)2. In a sample of 1934 events from this reaction, the ρ0 decay-angular distributions and spin-density-matrix elements are consistent with s-channel helicity conservation, the π+π− mass shape displays the same skewing as seen in the reaction γp→pπ+π−, and the pπ+π− mass distribution compares well and scales according to the vector dominance model with that produced in π±p→πfast±pπ+π−.
No description provided.
No description provided.
SPIN DENSITY MATRIX ELEMENTS FOR THE DIFFRACTIVE RHO0 MESON FROM STUDY OF THE ANGULAR DISTRIBUTIONS. CORRECTION HAS BEEN MADE FOR THE (20 +- 5) PCT NON DIFFRACTIVE BACKGROUND IN THE FINAL DATA SAMPLE, ASSUMING IT TO HAVE AN ISOTOPIC ANGULAR DISTRIBUTION.
Momenta of charged particles produced in inelastic αα, αp, andpp collisions were measured using the Split-Field-Magnet detector at the CERN Intersecting Storage Rings. Inclusive and semi-in-clusive spectra are presented as a function of rapidityy, Feynman-x, and transverse momentumpT. The inclusivey distributions agree well with predictions of the dual parton model; the highest particle densities are reached aty≃0 and the momenta of leading protons decrease significantly for increasing total multiplicity. ‘Temperatures’ are equal in αα, αp, andpp interactions. ThepT distributions depend weakly on the multiplicity.
No description provided.
No description provided.
No description provided.
A study of ϕ-meson photoproduction by partially polarized photons of energy 20–40 GeV is reported. The production mechanism is found to conserves-channel helicity and to proceed via natural-parity exchange in thet channel. In the photoproduction of high-massK+K− states with photons of energy 20–70 GeV, there is evidence for an enhancement at a mass of 1.76 GeV with width 0.08 GeV.
No description provided.
No description provided.
No description provided.